NTNU | Norwegian University of Science and Technology

LIE ALGEBRA REPRESENTATIONS AND SYMMETRIES OF NHDM POTENTIALS

Marius Solberg

Workshop on Multi-Higgs Models, Lisboa, September 04, 2024.

Overview

- Based on (both papers co-authored with Robin Plantey):
- Computable conditions for order-2 CP symmetry in NHDM potentials, JHEP 05 (2024) 260, arXiv:2404.02004
- Representation-theoretical characterization of canonical custodial symmetry in NHDM potentials, Nuclear Physics B, Volume 1006, 2024, 116650, arXiv:2407.05085
- We will show how it is possible to decide whether or not a NHDM potential has an order-2 CP symmetry (CP2) or a canonical custodial symmetry (CS).
- Done by detecting the defining representation of the Lie algebra so(N) for CP2, and certain bases of the defining representation of so(N) for CS.

Bilinear formalism

The general NHDM potential may be written¹

$$V = M_0 K_0 + M_a K_a + \Lambda_0 K_0^2 + L_a K_0 K_a + \Lambda_{ab} K_a K_b,$$
(1)

• where the N^2 linearly independent bilinears can be written

$$\mathcal{K}_0 = \Phi_i^{\dagger} \Phi_i, \quad \mathcal{K}_a = \Phi_i^{\dagger} (\lambda_a)_{ij} \Phi_j.$$
⁽²⁾

where λ_{α} are generalized Gell-Mann matrices.

- The M's, L's and Λ's are parameters.
- We define the GM matrices λ_{α} such that the $k \equiv N(N-1)/2$ antisymmetric matrices are ordered first.

¹M. Maniatis and O. Nachtmann, arXiv:1504.01736

Bilinear formalism

In a way giving a lexicographic order of the doublets in the k first bilinears:

$$\{K_{a}\}_{a=1}^{k} = 2\{\widehat{C}_{12}, \widehat{C}_{13}, \dots, \widehat{C}_{1N}, \widehat{C}_{23}, \dots, \widehat{C}_{2N}, \widehat{C}_{34}, \dots \\ \dots, \widehat{C}_{N-1,N}\},$$
(3)

where

$$\widehat{C}_{mn} \equiv \operatorname{Im}(\Phi_m^{\dagger} \Phi_n). \tag{4}$$

The general NHDM potential V:

$$V = M_0 K_0 + M_a K_a + \Lambda_0 K_0^2 + L_a K_0 K_a + \Lambda_{ab} K_a K_b,$$
(1)

• Under a Higgs basis shift $\Phi_i \rightarrow \Phi'_i = U_{ij}\Phi_j$, $U \in SU(N)$, V transforms as

$$M_{0} \to M_{0}, \quad \Lambda_{0} \to \Lambda_{0},$$

$$M \to R(U)M, \quad L \to R(U)L,$$

$$\Lambda \to \Lambda' = R(U)\Lambda R^{T}(U),$$
(5)

• where $R(U) \in \operatorname{Ad}_{SU(N)} \subset SO(N^2 - 1)$ is given by

$$U^{\dagger}\lambda_{a}U = R_{ab}(U)\lambda_{b}.$$
 (6)

5/27

- M and L are examples of "adjoint vectors" since they transform as vectors under the adjoint representation Ad_{SU(N)}.
- A also consists of adjoint vectors (its eigenvectors) through its spectral decomposition (eigensystem expansion).

Adjoint vectors and F-product

• Adjoint vectors are connected to the Lie algebra $\mathfrak{su}(N)$ through the map

$$\Omega: \mathbb{R}^{N^2 - 1} \to \mathfrak{su}(N)$$
$$a \mapsto a_i \lambda_i. \tag{7}$$

• Ω is an Lie algebra isomorphism when \mathbb{R}^{N^2-1} is equipped with the F-product²

$$F : \mathbb{R}^{N^2 - 1} \times \mathbb{R}^{N^2 - 1} \to \mathbb{R}^{N^2 - 1}$$
$$(a, b) \mapsto f_{ijk} a_i b_j \equiv F_k^{(a, b)}$$
(8)

where f_{ijk} are the structure constants of $\mathfrak{su}(N)$ (in GM basis).

²I. de Medeiros Varzielas and I. P. Ivanov, arXiv:1903.1110

F-product

• Let $X \equiv \Omega(x) = x_i \lambda_i$, then

$$F^{(a,b)} = c \quad \Longleftrightarrow \quad [A,B] = 2iC. \tag{9}$$

Hence, F-product relations are invariant under Higgs basis shifts,

$$F^{(a,b)} = c \iff F^{(a',b')} = c', \tag{10}$$

where x' = R(U)x.

CP2

A potential has an order-2 CP (CP2) if and only if it has a real basis³ ⇒ a basis were Λ is of the block diagonal form

$$\Lambda = \begin{pmatrix} C_N & \mathbf{0} \\ \mathbf{0} & A_N \end{pmatrix},\tag{11}$$

where C_N and A_N are arbitrary real and symmetric $k \times k$ and $(N^2 - 1 - k) \times (N^2 - 1 - k)$ matrices, with $k \equiv N(N - 1)/2$.

Means that the k eigenvectors t_a corresponding to C_N generates the def. rep. of so(N) through

$$span\{(t_a)_b\lambda_b\}_{a=1}^k = span(\lambda_1, \dots, \lambda_k) = \mathfrak{so}(N),$$
(12)

since $(t_a)_b = 0$ for b > k, where λ_b are the generalized GM-matrices.

³J. F. Gunion and H. E. Haber, arXiv:0506227

- The def. rep. of $\mathfrak{so}(N)$ here is conserved by Higgs basis shifts:
- I.e. a Higgs basis shift $U \in SU(N) \Rightarrow$

$$t_a \to v_a = R(U)t_a \tag{13}$$

- \Rightarrow span{ V_a } $_{a=1}^k$ is equivalent to the def. rep. of $\mathfrak{so}(N)$.
- Moreover, real basis \Rightarrow

$$L \cdot t_a = M \cdot t_a = 0 \quad \forall a \le k \tag{14}$$

since *k* first elements of *L* and *M* are inducing complex parameters in *V*.

Main result, CP2

A NHDM potential is CP2-symmetric if and only if⁴

- **1.** $k = \frac{N(N-1)}{2}$ of Λ 's eigenvectors, $\{v_a\}_{a=1}^k$, form a basis for the defining representation of $\mathfrak{so}(N)$
- **2.** $L \cdot v_a = M \cdot v_a = 0$, $\forall a \in \{1, \dots, k\}$ ("LM-orthogonality").
- The two conditions can be checked in any Higgs basis:
- (a) First by checking we have at least *k* LM-orthogonal eigenvectors,
- (b) then (if necessary) check if *k* LM-orthogonal eigenvectors form an algebra,
- (c) check if the algebra is $\mathfrak{so}(N)$,
- (d) check if it is the defining representation **N** of $\mathfrak{so}(N)$.

 $^{^{4}}N = 3$ was solved in arXiv:0605153 by C. C. Nishi

Do k LM-orth. eigenvectors give an algebra?

- Set of $k = \frac{N(N-1)}{2}$ eigenvectors of Λ closes under F-product (i.e. commutator) \Rightarrow algebra.
- One can in most cases avoid to blindly check the closure of all (max) $\binom{N^2-1}{k} \sim \frac{2^{N^2}}{\sqrt{2e\pi}N}$ sets of *k* eigenvectors:
- Done by calculating the structure constants Z_{abc} of $\mathfrak{su}(N)$ in the basis given by the eigenvectors of Λ .
- Z must be sparse for k eigenvecs that generate a subalgebra ⇒ we can usually dismiss a lot of candidate eigenvecs at "a glance".
- ► Eigenvalue degeneracies ⇒ any linear combination from each eigenspace must be checked ⇒ Numerical methods similar to CS?

Which algebra, $\mathfrak{so}(N)$?

- In case we have a k dimensional algebra, is it $\mathfrak{so}(N)$?
- If *N* is even and the rank $r = N/2 \le 11$, then $\mathfrak{so}(N)$ is the only possible algebra (cf. subalgebra tables).
- If *N* is odd and r = (N 1)/2 we have to calculate the root system to check if we have $\mathfrak{so}(N)$ (=linear algebra).

Which representation of $\mathfrak{so}(N)$?

The defining rep. N of so(N) is the only N-dimensional faithful rep. of so(N) in su(N), with only some low N exceptions:

Dimension	Representation
<i>N</i> = 3	2 + 1
<i>N</i> = 4	2 + 2 ′
N = 5	4 + 1
<i>N</i> = 6	4 + 1 + 1
	${\bf \overline{4}} + {\bf 1} + {\bf 1}$
N = 8	8 _s
	8 _c

So if N ≠ 3,4,5,6,8 we can conclude we have N and hence CP2 symmetry, otherwise, we have to calculate the highest weight (=linear algebra).

Custodial SO(4)_C ≃ (SU(2)_L × SU(2)_R)/Z₂ ⊃ SU(2)_L × U(1)_Y symmetry protects the ρ parameter

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \vartheta_W} \approx 1$$
(15)

from large radiative corrections.

A symmetry of the SM potential, but not necessarily of the NHDM potential.

Canonical custodial symmetry (CS) implies⁵ identical SU(2)_R action on all bidoublets in some doublet basis:

$$\begin{pmatrix} i\sigma_2\phi_i^* & \phi_i \end{pmatrix} \equiv B_{ii} \to U_L B_{ii} U_R^{\dagger}, \quad \forall i \in \{1, \dots, N\},$$
 (16)

Some cases of non-canonical custodial symmetries are possible, through non-uniform SU(2)_R action.⁶

⁶A. Pilaftsis, arXiv:1109.3787; N. Darvishi, A. Pilaftsis, arXiv:1912.00887.

⁵C. C. Nishi, arXiv:1103.0252

Manifest CS

CS potentials may be transformed to a characteristic block-diagonal form, similarly to CP2-symmetric potentials, were CS is manifest:

$$\Lambda_C = \begin{pmatrix} C_N & \mathbf{0} \\ \mathbf{0} & A_N \end{pmatrix} \tag{17}$$

- The "custodial block" C_N (a $k \times k$ matrix, $k = \frac{N(N-1)}{2}$) was arbitrary in the case of manifest CP2, but is severely restricted in case of manifest CS.
- C_N generated by CS terms of the form⁷

$$\lambda_{abcd} I_{abcd}^{(4)} = \lambda_{abcd} (\widehat{C}_{ab} \widehat{C}_{cd} + \widehat{C}_{ad} \widehat{C}_{bc} + \widehat{C}_{ac} \widehat{C}_{db}), \tag{18}$$

with $\widehat{C}_{ij} \equiv \operatorname{Im}(\Phi_i^{\dagger} \Phi_j)$

NTNU 16/27

⁷C. C. Nishi, arXiv:1103.0252

Main result, CS

- Let N > 2 and $N \neq 8$. Then a potential V is custodial-symmetric \iff
- A has k = N(N-1)/2 *LM*-orthogonal normalized eigenvectors v_a , with the same eigenvalues and F-product relations as the normalized eigenvectors t_a of some instance of the custodial block C_N .
- Only \Rightarrow holds if N = 8:
- Because "triality" yields 2 additional representations of so(8), with the same F-product relations as the defining rep. of so(8).
- We apply this result to get computable conditions for CS for N = 3, 4 and 5:⁸

 $^{^{8}}N = 3$ already solved in arXiv:1103.0252 by C. C. Nishi

Custodial block

$$C_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(19)

With simple, corresponding eigenvecs and eigenvalues

$$t_{ai} = \delta_{ai}, \quad \beta_a = 0, \quad a = 1, 2, 3.$$
 (20)

These normalized eigenvectors satisfy the F-product relations

$$2F^{(t_a,t_b)} = \epsilon_{abc} t_c \tag{21}$$

► \Leftrightarrow the associated matrices $T_d \equiv (t_d)_e \lambda_e$ yield the defining rep., i.e. the **3**, of $\mathfrak{so}(3)$:

$$[T_a, T_b] = i\epsilon_{abc}T_c \tag{22}$$

Note that the 2 + 1 of so(3) would have given a prefactor 1 instead of 2 in (21),⁹ i.e.

$$1 \cdot F^{(t_a, t_b)} = \epsilon_{abc} t_c \tag{23}$$

⁹I. de Medeiros Varzielas and I. P. Ivanov, arXiv:1903.1110

• Custodial block, $\alpha \in \mathbb{R}$:

$$C_4 = \alpha \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(24)

• C_4 has eigenvectors with eigenvalues $\pm \alpha$

$$\begin{split} t_1^+ &= \frac{1}{\sqrt{2}} (+1, 0, 0, 0, 0, -1, \mathbf{0}_9)^T \\ t_2^+ &= \frac{1}{\sqrt{2}} (0, +1, 0, 0, +1, 0, \mathbf{0}_9)^T \\ t_3^+ &= \frac{1}{\sqrt{2}} (0, 0, -1, +1, 0, 0, \mathbf{0}_9)^T \\ t_1^- &= \frac{1}{\sqrt{2}} (+1, 0, 0, 0, 0, +1, \mathbf{0}_9)^T \\ t_2^- &= \frac{1}{\sqrt{2}} (0, +1, 0, 0, -1, 0, \mathbf{0}_9)^T \\ t_3^- &= \frac{1}{\sqrt{2}} (0, 0, +1, +1, 0, 0, \mathbf{0}_9)^T \end{split}$$

• And one finds that they satisfy the $\mathfrak{so}(4) \cong \mathfrak{so}(3)_{\alpha} \oplus \mathfrak{so}(3)_{-\alpha}$ F-product relations

$$\sqrt{2}F^{(t_a^{\pm}, t_b^{\pm})} = \epsilon_{abc} t_c^{\pm}$$

$$F^{(t_a^{\pm}, t_b^{\pm})} = 0$$
(26)

- We can apply this to check if an arbitrary 4HDM potential has CS.
- (26) is independent of bases of the $\mathfrak{so}(3)$'s, also when CS is not manifest.

Extended eigenvalue degeneracies, *N* = 4

- In case of extended degeneracies, i.e. 4 or more eigenvecs with eigenvalue $\pm \alpha$, numerical methods have to be applied.
- We suggest a method based on optimization which quickly solves even the most extreme degeneracies.
- In case $\alpha = 0$, the methods from our CP2-article may be applied to detect the def. repr. of $\mathfrak{so}(4)$.

- ► $\binom{5}{4} = 5$ free parameters in $C_5 \Rightarrow$ detection of CS more difficult as the eigenvectors of C_5 are not constant, in contrast to N = 3, 4.
- However, we show C_5 always can be transformed to

by a rotation of the doublets.

▶ \Rightarrow all instances of CS for the 5HDM are equivalent to (27).

(27)

▶ **3+3 eigenvectors** of C_5 corr. to eigenvalues $\pm \alpha$ satisfy $\mathfrak{so}(4) \cong \mathfrak{so}(3)_{\alpha} \oplus \mathfrak{so}(3)_{-\alpha}$ F-products

$$\sqrt{2}F^{(t_a^{\pm},t_b^{\pm})} = \epsilon_{abc}t_c^{\pm}$$

$$F^{(t_a^{\pm},t_b^{\mp})} = 0.$$
(28)

- And together with the 4 nullvectors of C₅, the eigenvecs of C₅ generate the def. repr. of so(5).
- F-products involving nullvecs will depend on chosen basis of the nullvecs.

- May check if 10 candidate eigenvecs generate a subalgebra (closes under F-products) by e.g. applying projectors.
- Subalgebra tables show the only 10d subalgebra of su(5) containing so(4) is so(5).
- Finally, the prefactor $\sqrt{2}$ in (28) ensures you have the def. repr. of $\mathfrak{so}(5)$.
- Hence, the incomplete F-product relations (28) are sufficient to establish CS for N = 5.

Extended eigenvalue degeneracies, *N* = 5

- Extended degeneracies, including the case $\alpha = 0$, may be handled similarly as for N = 4.
- We were able to solve the worst degeneracy, for completely generic numerical potentials, by numerically optimizing quartic polynomials of up to 90 variables (takes less than a few minutes on an ordinary desktop computer).
- For N > 5 the eigenvalue pattern essentially fades away, which makes it more difficult to decide whether or not a potential has a CS.