

Unitarity constraints on large multiplets of arbitrary gauge groups

André Milagre (CFTP/IST) In collaboration with Luís Lavoura (CFTP/IST) Nucl. Phys. B 1004 (2024) 116542 [2403.12914]

Multi–Higgs Workshop, Lisbon

4th of September, 2024

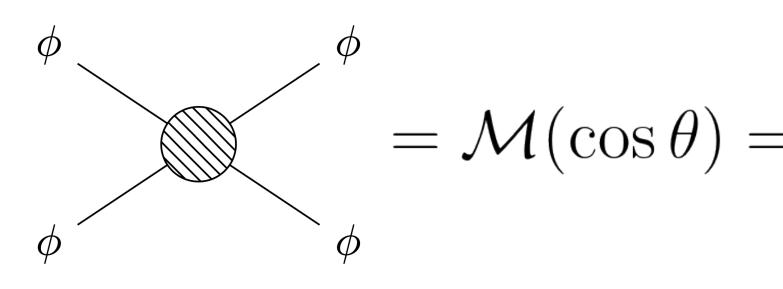
Preamble

Q: Can the dimension and number of scalar & fermionic multiplets be arbitrarily large?

Impose Partial Wave Unitarity Pairs of fermion/scalar annihilating into gauge bosons

Partial Wave Unitarity Bounds

• Decompose scattering amplitude into partial waves:



• Optical Theorem: scattering amplitudes cannot grow arbitrarily large

$$|a_J| \le 1$$

$$0 \leq \operatorname{Im}\left\{a_{J}\right\} \leq 1$$

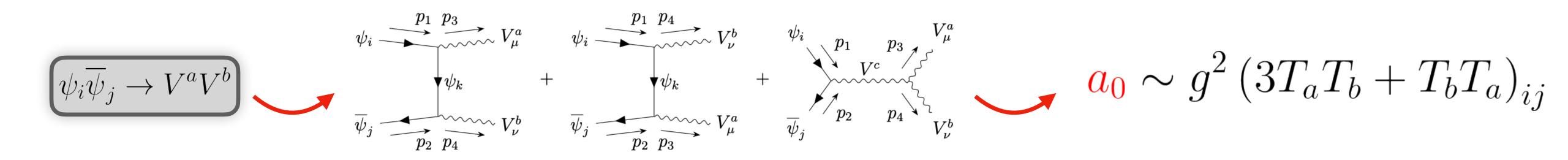
 $\left|\operatorname{Re}\left\{a_J\right\}\right| \le \frac{1}{2}$

$$= 16\pi \sum_{J=0}^{\infty} a_J (2J+1) P_J(\cos\theta)$$

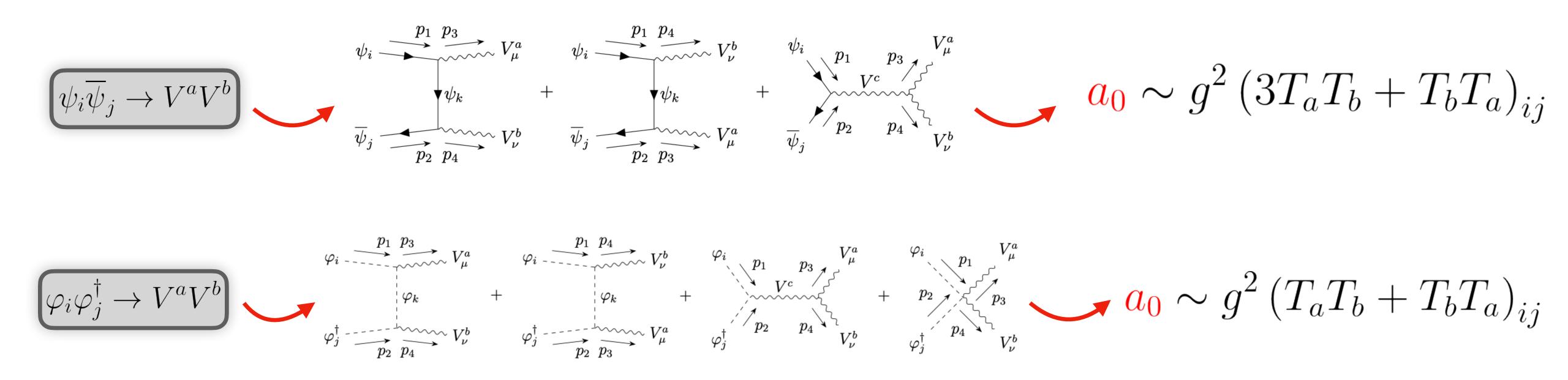
$$\left|\operatorname{Re}\left\{a_{0}\right\}\right| \leq \frac{1}{2}$$

- Consider theory symmetric under one gauge group G
- Contain **one** fermionic OR scalar multiplet of dimension n
- Working in unmixed basis and high-energy limit:

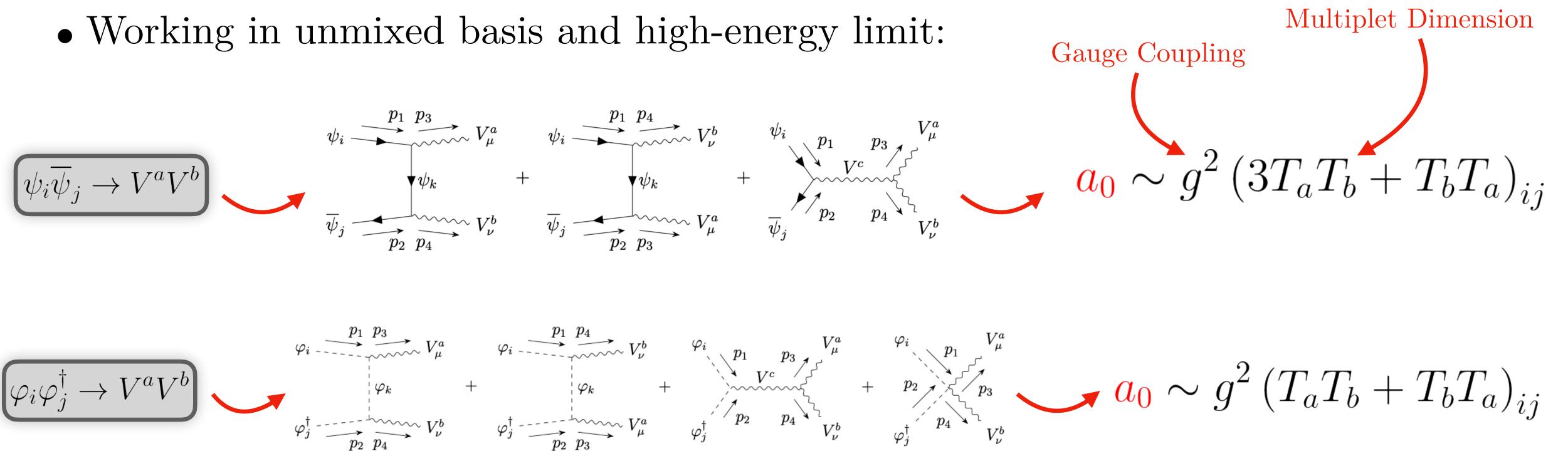
- Consider theory symmetric under one gauge group G
- Contain **one** fermionic OR scalar multiplet of dimension n
- Working in unmixed basis and high-energy limit:



- Consider theory symmetric under one gauge group G
- Contain **one** fermionic OR scalar multiplet of dimension n
- Working in unmixed basis and high-energy limit:



- Consider theory symmetric under one gauge group G
- Contain **one** fermionic OR scalar multiplet of dimension n



- quantum numbers!

$$\left\langle V^a V^b \left| a_0 \right| \psi_i \overline{\psi}_j \right\rangle \le \frac{1}{2} \qquad \qquad \sum_{ijab} k_{ijab} \left\langle V^a V^b \left| a_0 \right| \psi_i \overline{\psi}_j \right\rangle \le \frac{1}{2}$$

• There are many states (with same quantum numbers) scattering into $|VV\rangle$

• Partial unitarity bounds must also apply to superpositions of states with same

- There are many states (with same quantum numbers) scattering into $|VV\rangle$
- Partial unitarity bounds must also apply to superpositions of states with same quantum numbers!

$$\left\langle V^a V^b \left| a_0 \right| \psi_i \overline{\psi}_j \right\rangle \le \frac{1}{2}$$

• Largest a_0 arise from symmetrical (*i.e.* group invariant) superposition of states

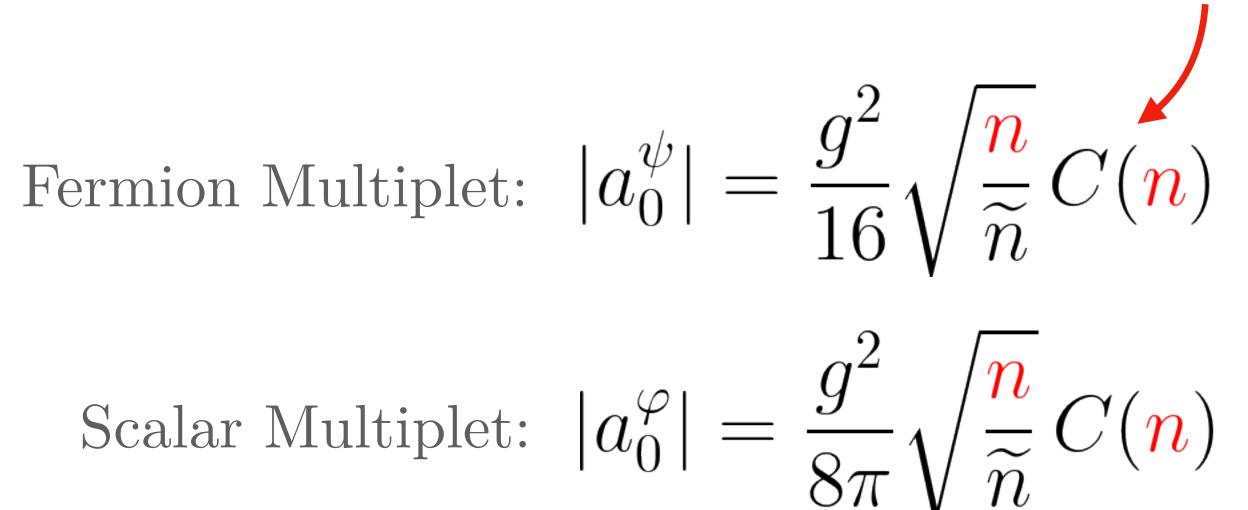
$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Initial States

$$\sum_{ijab} k_{ijab} \left\langle V^a V^b \left| a_0 \right| \psi_i \overline{\psi}_j \right\rangle \le \frac{1}{2}$$

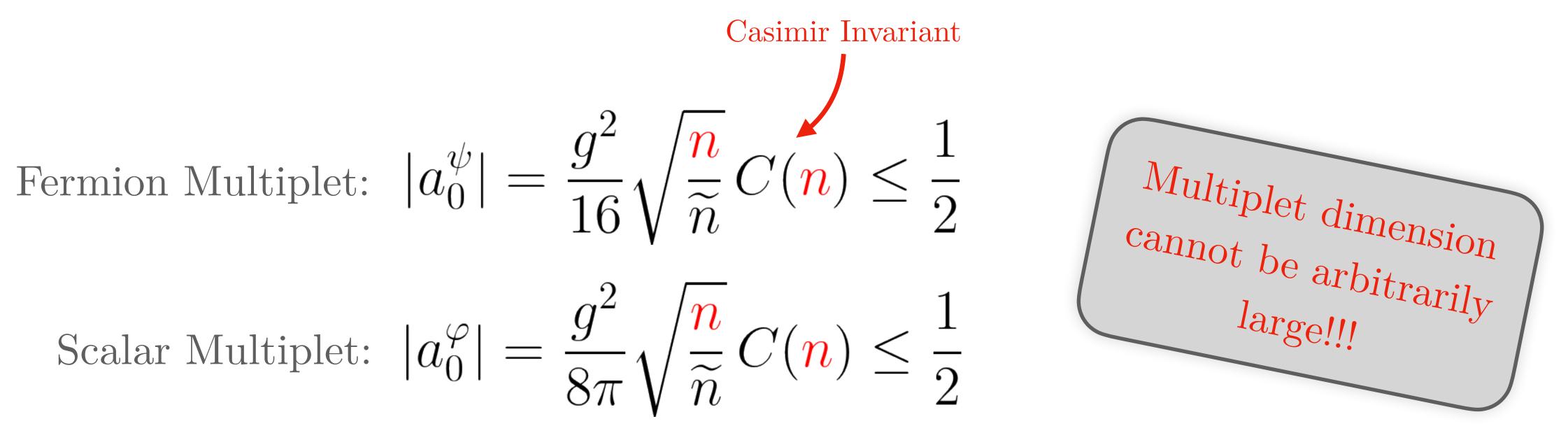
Final State

• Symmetric states allow for simplifications using group theory identities:



Casimir Invariant

• Symmetric states allow for simplifications using group theory identities:



Multiple multiplets & multiple gauge groups

- Now consider theory with:
 - N_F fermionic multiplets with dimension n_{Fi}
 - N_S scalar multiplets with dimension n_{Si}
 - Symmetric under $G_1 \times G_2 \times G_3 \times \ldots$
- Using coupled channel analysis, largest a_0 is the largest eigenvalue of:

$$\begin{pmatrix} |a_0^{F_1}|_{G_1} & |a_0^{F_2}|_{G_1} & \cdots & |a_0^{S_1}|_{G_1} & |a_0^{S_2}|_{G_1} & \cdots \\ |a_0^{F_1}|_{G_2} & |a_0^{F_2}|_{G_2} & \cdots & |a_0^{S_1}|_{G_2} & |a_0^{S_2}|_{G_2} & \cdots \\ |a_0^{F_1}|_{G_3} & |a_0^{F_2}|_{G_3} & \cdots & |a_0^{S_1}|_{G_3} & |a_0^{S_2}|_{G_3} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Multiple multiplets & multiple gauge groups

- Now consider theory with:
 - N_F fermionic multiplets with dimension n_{Fi}
 - N_S scalar multiplets with dimension n_{Si}
 - Symmetric under $G_1 \times G_2 \times G_3 \times \ldots$
- Using coupled channel analysis, largest a_0 is the largest eigenvalue of:

$$\begin{pmatrix} |a_{0}^{F_{1}}|_{G_{1}} & |a_{0}^{F_{2}}|_{G_{1}} & \cdots & |a_{0}^{S_{1}}|_{G_{1}} & |a_{0}^{S_{2}}|_{G_{1}} & \cdots \\ |a_{0}^{F_{1}}|_{G_{2}} & |a_{0}^{F_{2}}|_{G_{2}} & \cdots & |a_{0}^{S_{1}}|_{G_{2}} & |a_{0}^{S_{2}}|_{G_{2}} & \cdots \\ |a_{0}^{F_{1}}|_{G_{3}} & |a_{0}^{F_{2}}|_{G_{3}} & \cdots & |a_{0}^{S_{1}}|_{G_{3}} & |a_{0}^{S_{2}}|_{G_{3}} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\begin{array}{c} \text{Single Gauge} \\ \text{Group} \end{array} \quad |a_{0}| = \sqrt{\sum_{i=1}^{N_{F}} \left[a_{0}^{F_{i}}\right]^{2} + \sum_{i=1}^{N_{S}} \left[a_{0}^{S_{i}}\right]^{2} \\ \downarrow \\ \frac{1}{2} + \sum_{i=1}^{N_{S}} \left[a_{0}^{S_{i}}\right]^{2} \\ \frac{1}{2} + \sum_{i=1}^{N_{S}} \left[a_{0}^{S_{i}}\right]^{$$

Grand Unified Theory E_6

- Fermions are in three families of 27 dimensional multiplets
- Correct fermion mass hierarchy is only achieved with a **351**' scalar multiplet
- Using conservative estimate for g at GUT scale \Rightarrow Violation of unitarity
- More scalar multiplets are needed to break $E_6 \rightarrow SM$

Grand Unified Theory E_6

- Fermions are in three families of 27 dimensional multiplets
- Correct fermion mass hierarchy is only achieved with a **351**' scalar multiplet
- Using conservative estimate for g at GUT scale \Rightarrow Violation of unitarity
- More scalar multiplets are needed to break $E_6 \rightarrow SM$

Raise questions about viability of any perturbative E_6 GUT!

Multi-Higgs Models

- Consider a universe with N_{Higgs} doublets
- $N_{\text{Higgs}} = 1$: $|a_0| \approx 10^{-2}$
- In general: $|a_0| \approx 10^{-2} \sqrt{N_{Higgs}}$

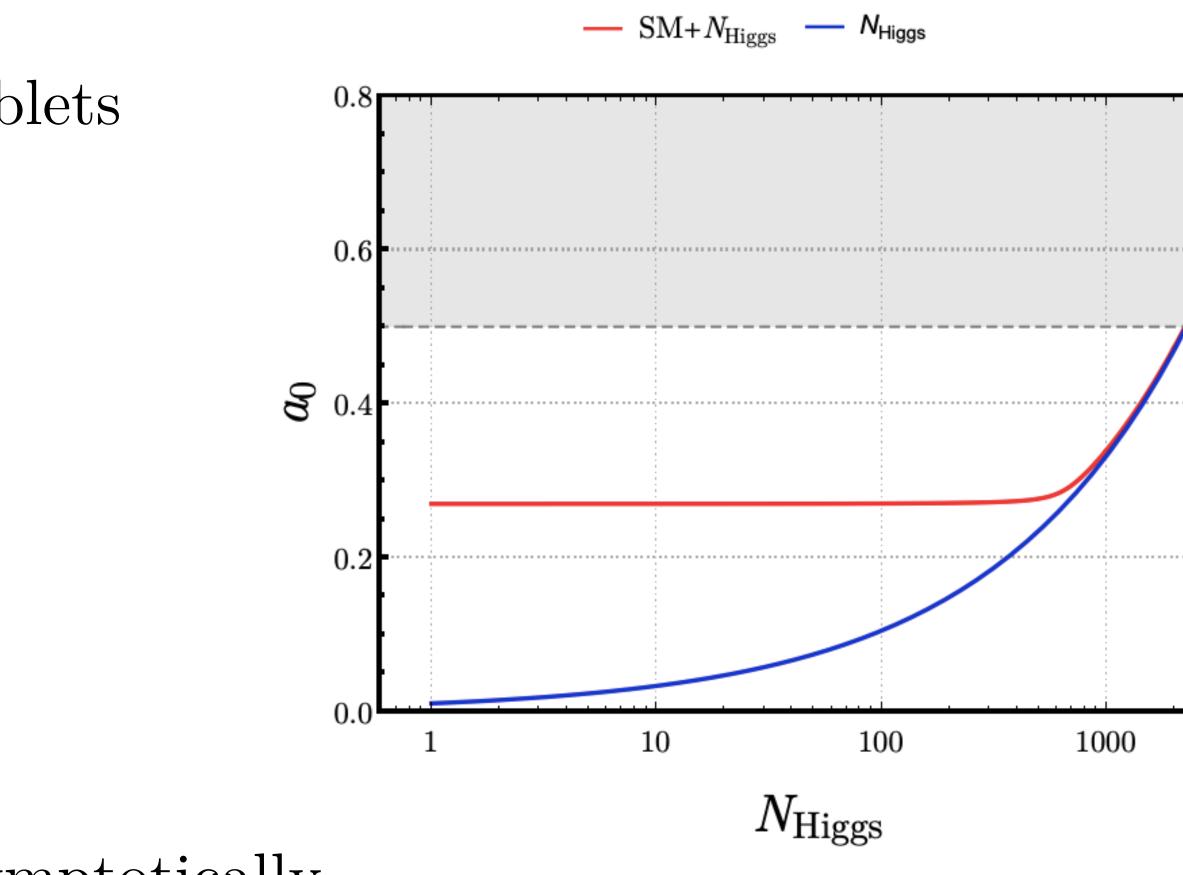
$$|a_0| \le \frac{1}{2} \Leftrightarrow N_{Higgs} \le 2262$$

Multi-Higgs Models

- Consider a universe with N_{Higgs} doublets
- $N_{\text{Higgs}} = 1$: $|a_0| \approx 10^{-2}$
- In general: $|a_0| \approx 10^{-2} \sqrt{N_{Higgs}}$

$$|a_0| \le \frac{1}{2} \Leftrightarrow N_{Higgs} \le 2262$$

• Full calculation with $SM + N_{Higgs}$ asymptotically approaches $\propto \sqrt{N_{Higgs}}$



Final Remarks

- Imposed Partial Wave Unitarity Bounds
 - \Rightarrow Dimension of multiplets cannot be arbitrarily large
 - \Rightarrow Number of multiplets cannot be arbitrarily large
- Powerful formulas to quickly check validity of perturbation theory
- All E_6 scenarios violate perturbative unitarity
- In NHDM, "N" cannot be arbitrarily large if we want theory to be perturbative

Backup Slides

Scattering Matrix

$a_0 = \begin{pmatrix} 0 & M \\ M^T & 0 \end{pmatrix} \qquad M =$

$$= \begin{pmatrix} |a_0^{F_1}|_{G_1} & |a_0^{F_2}|_{G_1} & \cdots & |a_0^{S_1}|_{G_1} & |a_0^{S_2}|_{G_1} \\ |a_0^{F_1}|_{G_2} & |a_0^{F_2}|_{G_2} & \cdots & |a_0^{S_1}|_{G_2} & |a_0^{S_2}|_{G_2} \\ |a_0^{F_1}|_{G_3} & |a_0^{F_2}|_{G_3} & \cdots & |a_0^{S_1}|_{G_3} & |a_0^{S_2}|_{G_3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

• • •

• • •

• • •

Constraints on SM extension

• SM particle content is well compatible with unitarity: $|a_0| \approx 0.27$

$$\psi \sim \left(\boldsymbol{n}_{\psi}^{SU(3)}, \, \boldsymbol{n}_{\psi}^{SU(2)}, \, Y_{\psi} \right)$$

		$oldsymbol{n}_\psi^{SU(3)}$							
	$ Y_\psi ^{ m max}$	1	3	6	8				
$oldsymbol{n}_{\psi}^{SU(2)}$	1	7.91	5.96	4.41	4.04				
	2	6.65	4.96	2.65	2.13				
	3	6.00	4.39						
	4	5.52	3.87						
	5	5.05	2.95						
	6	4.37							
	7	2.13							

 $\varphi \sim \left(\boldsymbol{n}_{\varphi}^{SU(3)}, \, \boldsymbol{n}_{\varphi}^{SU(2)}, \, Y_{\varphi} \right)$

		$oldsymbol{n}_arphi^{SU(3)}$							
	$ Y_{arphi} ^{\max}$	1	3	6	8	10			
$oldsymbol{n}^{SU(2)}_{arphi}$	1	9.92	7.51	6.04	5.60	3.03			
	2	8.34	6.29	4.78	4.40				
	3	7.53	5.64	3.94	3.56				
	4	6.97	5.15	2.86	2.10				
	5	6.51	4.62						
	6	6.03	3.74						
	7	5.38							
	8	4.08							