NEW PHYSICS IMPLICATIONS OF VECTOR BOSON FUSION SEARCHES

EXEMPLIFIED THROUGH THE GEORGI-MACHACEK MODEL

IPSITA SAHA

IIT Madras

NUTE OF TECHAN NUTE OF TECHAN

PRD 109(2024) 1, 015016 M. CHAKRABORTI, D.DAS, N. GHOSH, S. MUKHERJEE, IS

SM HIGGS SEARCHES

ATLAS Preliminary	Stat. 💳 S	Svst. 📕 SM
$\sqrt{s} = 13 \text{ TeV}, 24.5 - 79.8 \text{ fb}^{-1}$	olali	,
$ m_H = 125.09 \text{ GeV}, y_H < 2.5$		
$\beta_{SM} = 71.78$	Total	Stat. Syst.
ggFγγ 🙀	0.96 ± 0.14 (± 0.11 , $^{+0.09}_{-0.08}$)
ggF ZZ 🙀	1.04 +0.16 ($\pm \ 0.14$, $ \pm \ 0.06$)
ggF WW 📥	1.08 ± 0.19 (± 0.11 , ± 0.15)
ggF ττ μ	0.96 +0.59 -0.52 ($^{+0.37}_{-0.36}$, $^{+0.46}_{-0.38}$)
ggF comb.	1.04 ± 0.09 (± 0.07 , $^{+0.07}_{-0.06}$)
VBF γγ μ εση ι	1.39 +0.40 ($^{+0.31}_{-0.30}$, $^{+0.26}_{-0.19}$)
VBF ZZ	2.68 +0.98 ($^{+0.94}_{-0.81}$, $^{+0.27}_{-0.20}$)
VBF WW	0.59 + 0.36 ($^{+0.29}_{-0.27}$, ± 0.21)
VBF ττ μ	1.16 +0.58 ($^{+0.42}_{-0.40}$, $^{+0.40}_{-0.35}$)
VBF bb	3.01 +1.67 ($^{+1.63}_{-1.57}$, $^{+0.39}_{-0.36}$)
VBF comb. 🔤	1.21 +0.24 ($^{+0.18}_{-0.17}$, $^{+0.16}_{-0.13}$)
VH γγ ι	1.09 + 0.58 ($^{+0.53}_{-0.49}$, $^{+0.25}_{-0.22}$)
VH ZZ	0.68 + 1.20 ($^{+1.18}_{-0.77}$, $^{+0.18}_{-0.11}$)
VH bb 🖬 🖬	1.19 +0.27 ($^{+0.18}_{-0.17}$, $^{+0.20}_{-0.18}$)
VH comb.	1.15 +0.24 (± 0.16 , $+0.17$ ± 0.16 , -0.16)
ttH+tH γγ 📮	1.10 +0.41 ($+0.36 +0.19 \\ -0.33 , -0.14$
ttH+tH VV	1.50 + 0.59 ($+0.43 + 0.41 \\ -0.42 , -0.38$
	1.38 +1.13 ($+0.84 + 0.75 \\ -0.76 - 0.59$
ttH+tH bb	0.79 +0.60 (± 0.29 , ± 0.52)
<i>ttH</i> + <i>tH</i> comb. ■	1.21 ^{+0.26} _{-0.24} (± 0.17 , ± 0.20 ± 0.17 , -0.18)
*		
2 0 2 4	6	8
Parameter normalized to SM value		

DARK MATTER, MATTER-ANTIMATTER ASYMMETRY, NONZERO NEUTRINO MASS ETC.

ELECTROWEAK SYMMETRY BREAKING

THE ELECTROWEAK SYMMETRY BREAKING IS DRIVEN BY ONLY ONE HIGGS DOUBLET In the standard model.

The Electroweak vacuum expectation value (vev) is estimated by measuring the Fermi Constant $G_F = \frac{1}{\sqrt{2}v^2}$

ONE SM HIGGS BOSON AND THE LHC DATA RESEMBLES THE SM NATURE

WHAT KIND OF $SU(2)_L{\rm MULTIPLETS}$ contribute to the electroweak vev and to what degree??

INSIGHT INTO THE COMPOSITION OF ELECTROWEAK VEV

Nonstandard contribution to EW vev can only arise from scalar multiplets transforming non-trivially under SM SU(2).

Neutral singlets do not
couple to W/Z bosons.
Their vevs do not
contribute to EW vev.

Charged singlets do not develop VEVs.

INSIGHT INTO THE COMPOSITION OF ELECTROWEAK VEV

How much the non-doublet contribution is there in the EW vev?

In certain cases, constraints can arise from EW ρ -parameter : Example-Higgs Triplet Model.

Higher multiplets can be arranged such that $\rho = 1$ at the tree-level.

Restoring custodial symmetry (GM model)

Ref: Georgi and Machacek '1985

Ref: Chiang and Yagyu '18 accidental cancellation.

Hence, the constraints from the ρ -parameter will not be effective in constraining the vevs from these multiplets. $\rightarrow \gamma$ γ γ

IMPLICATIONS FROM VBF SEARCHES : AN ALTERNATIVE PROBE

Non-standard scalar searches in the vector-boson fusion processes can be crucial.

Higher vev v_H enhances the observational prospects of H

NON-OBSERVATION OF H LEADS TO AN UPPER BOUND ON v_H (MASS DEPENDENT) Multihiggs doublet

HVV coupling vanishes in the 'alignment limit'.

 $\sim g v_H$

EXAMPLE BSM GEORGI-MACHACEK MODEL

Consists of a one SU(2) complex doublet (Y=1), one real triplet (Y=0) and one complex triplet (Y=1)

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{pmatrix}, \qquad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^- & \xi^0 & \chi^+ \\ \chi^{--} & -\xi^- & \chi^0 \end{pmatrix}. \quad * Q = T_3 + Y$$

The neutral components expanded around their vevs,

$$\sqrt{v_d^2 + 8v_t^2} = v = 246 \,\,{
m GeV}$$

$$\phi^{0} = \frac{1}{\sqrt{2}} (v_{d} + h_{d} + i\eta_{d}) , \quad \xi^{0} = (v_{t} + h_{\xi}) , \quad \chi^{0} = \left(v_{t} + \frac{h_{\chi} + i\eta_{\chi}}{\sqrt{2}} \right) .$$

Consists of a one SU(2) complex doublet (Y=1), one real triplet (Y=0) and one complex triplet (Y=1)

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{pmatrix}, \qquad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^- & \xi^0 & \chi^+ \\ \chi^{--} & -\xi^- & \chi^0 \end{pmatrix}. \qquad * Q = T_3 + \frac{Y}{2}$$

The neutral components expanded around their vevs,

$$\sqrt{v_d^2 + 8v_t^2} = v = 246 \text{ GeV}$$

$$\phi^{0} = \frac{1}{\sqrt{2}} (v_{d} + h_{d} + i\eta_{d}) , \quad \xi^{0} = (v_{t} + h_{\xi}) , \quad \chi^{0} = \left(v_{t} + \frac{h_{\chi} + i\eta_{\chi}}{\sqrt{2}} \right).$$

Physical scalars can be categorized based on their transformation properties under the global custodial SU(2)

A custodial fiveplet with common mass m_5 A custodial triplet with common mass m_3 Two custodial singlets with mass $m_h \& m_H$ $(H_5^{++}, H_5^{+}, H_5^{0}, H_5^{-}, H_5^{--})$

The quartic couplings in terms of the physical mass and mixings:

$$\begin{split} \lambda_{1} &= \frac{1}{8v^{2}\cos^{2}\beta} \left(m_{h}^{2}\cos^{2}\alpha + m_{H}^{2}\sin^{2}\alpha\right), \\ \lambda_{2} &= \frac{1}{12v^{2}\cos\beta\sin\beta} \left(\sqrt{6}\left(m_{h}^{2} - m_{H}^{2}\right)\sin2\alpha + 12m_{3}^{2}\sin\beta\cos\beta - 3\sqrt{2}v\cos\beta M_{1}\right), \\ \lambda_{3} &= \frac{1}{v^{2}\sin^{2}\beta} \left(m_{5}^{2} - 3m_{3}^{2}\cos^{2}\beta + \sqrt{2}v\cos\beta\cot\beta M_{1} - 3\sqrt{2}v\sin\beta M_{2}\right), \\ \lambda_{4} &= \frac{1}{6v^{2}\sin^{2}\beta} \left(2m_{H}^{2}\cos^{2}\alpha + 2m_{h}^{2}\sin^{2}\alpha - 2m_{5}^{2} + 6\cos^{2}\beta m_{3}^{2} - 3\sqrt{2}v\cos\beta\cot\beta M_{1} + 9\sqrt{2}v\sin\beta M_{2}\right), \\ \lambda_{5} &= \frac{2m_{3}^{2}}{v^{2}} - \frac{\sqrt{2}M_{1}}{v\sin\beta}. \end{split}$$

Seven Lagrangian parameters. Two bilinears, five quartic couplings. Two vevs (v_t, v_d) , 4 physical scalar masses $(m_5, , m_3, m_H, m_h)$ and one mixing angle α .

Two trilinear couplings $M_1 \& M_2$ are independent parameters

THEORETICAL CONSTRAINTS

THEORETICAL CONSTRAINTS: UNITARITY

$$x_{1}^{\pm} = 12\lambda_{1} + 14\lambda_{3} + 22\lambda_{4} \pm \sqrt{(12\lambda_{1} - 14\lambda_{3} - 22\lambda_{4})^{2} + 144\lambda_{2}^{2}}$$
$$x_{2}^{\pm} = 4\lambda_{1} - 2\lambda_{3} + 4\lambda_{4} \pm \sqrt{(4\lambda_{1} + 2\lambda_{3} - 4\lambda_{4})^{2} + 4\lambda_{5}^{2}},$$

The theoretical constraints from perturbative unitarity requires that each of these eigenvalues must obey the conditions $|x_i|^{\pm}, |y_i| < 8\pi$

 $y_1 = 16\lambda_3 + 8\lambda_4,$ $y_2 = 4\lambda_3 + 8\lambda_4,$ $y_3 = 4\lambda_2 - \lambda_5,$ $y_4 = 4\lambda_2 + 2\lambda_5,$ $y_5 = 4\lambda_2 - 4\lambda_5.$

In the decoupling limit, $v_t \ll v$ Hartling, Kumar, Logan PRD 90, 015007' 2014

The unitarity conditions can be trivially satisfied in the `Decoupling limit'

and
$$\sin 2\alpha \approx \sqrt{\frac{3}{2}} \sin 2\beta$$
 with $v_t \ll v$
 $m_H^2 \approx m_3^2 \approx m_5^2 \approx \Lambda_1^2 \gg v^2$; $\Lambda_2^2 \ll v^2$.

$$\Lambda_1^2 = \frac{M_1 v}{\sqrt{2} \sin \beta} \equiv \frac{M_1 v^2}{4v_t},$$

$$\Lambda_2^2 = 3\sqrt{2} v M_2 \sin \beta \equiv 12 v_t M_2.$$

Variants of the GM model without the trilinear couplings M1 and M2, do not have a decoupling limit. D. Das, IS 'PRD 98, 095010, 2018

UNITARITY, BFB & DECOUPLING LIMIT

NONSTANDARD COUPLINGS OF 125 GEV HIGGS IN Decoupling limit

$$\sin 2\alpha \approx \sqrt{\frac{3}{2}} \sin 2\beta \quad \text{with } v_t \ll v$$
$$\tan \beta = \frac{2\sqrt{2}v_t}{v_d}$$
$$m_H^2 \approx m_3^2 \approx m_5^2 \approx \Lambda_1^2 \gg v^2; \ \Lambda_2^2 \ll v^2$$

Higgs trilinear couplings with the charged scalars will contribute to loop induced Higgs decay

$$\begin{split} \kappa_{3+} &\equiv \frac{v}{2m_3^2} g_{hH_3^+H_3^-} \approx -\frac{1}{m_3^2} \left(m_3^2 - \Lambda_1^2 + m_h^2 \right) \,, \\ \kappa_{5+} &\equiv \frac{v}{2m_5^2} g_{hH_5^+H_5^-} \approx -\frac{1}{m_5^2} \left(2m_5^2 - 3m_3^2 + \Lambda_1^2 - \Lambda_2^2 + m_h^2 \right) \,, \\ \kappa_{5++} &\equiv \frac{v}{2m_5^2} g_{hH_5^{++}H_5^{--}} \approx -\frac{1}{m_5^2} \left(2m_5^2 - 3m_3^2 + \Lambda_1^2 - \Lambda_2^2 + m_h^2 \right) \,. \end{split}$$

In the decoupling limit κ_{3+} , κ_{5+} , $\kappa_{5++} \approx 0$. It crucially depends on how $\sin \alpha \rightarrow 0$ is approached. Defines 'alignment with or without decoupling'.

LHC CONSTRAINTS

<u>CONSTRAINTS FROM HIGGS DATA</u>

★ In the decoupling limit, the doublet-triplet mixing is vanishingly small and 'h' has SM-like couplings.

aaF

The allowed parameter space corresponds to the common overlapping region. Higgs data thus restricts v_t to a finite region with clearly defined upper and lower limits on it for a fixed sin α .

NON STANDARD SCALAR SEARCHES

NONSTANDARD HIGGS DECAY (NEUTRAL)

- Relevant signal channel for constraining H_5^0 in the $m_3 > m_5$ limit. In the opposite mass hierarchy, $H_5^0 \to H_3^0 Z$, $H_3^{\pm} W^{\mp}$ can be present.
- The heavy Higgs H can also decay to ZZ but narrow width approximation works only for low mass region.

NONSTANDARD HIGGS DECAY (SINGLY CHARGED)

- Relevant signal channel for constraining H_5^+ which dominantly decays to WZ in the $m_3 > m_5$ limit.
- In the opposite mass hierarchy, decay modes of H_5^{\pm} diversified and additional decays into $H_3^0 W^{\pm}$, $H_3^{\pm} Z$ final states are possible.

NONSTANDARD HIGGS DECAY (DOUBLY CHARGED)

- The doubly charged scalar $H_5^{\pm} \pm$ dominantly decays to same sign W bosons in the $m_3 > m_5$ limit.
- In the opposite mass hierarchy, decay modes of $H_5^{\pm\pm}$ diversified and additional decays into $H_3^{\pm}W^{\pm}$ final states are possible.

ALLOWED PARAMETER SPACE

- Benchmarks for un-correlated $\sin \alpha v_t$ range. Limits get stronger for larger $\sin \alpha$. Exclusions from Higgs self-coupling κ_h can be pronounced in the future.
- The limits are stronger in the $m_3 > m_5$ limit. In the alternate case, additional decay modes reduced the effective BR.
- The most stringent bound comes from charged Higgs to WZ channel. The vertical green patch is the Drell-Yan production of H_5^{++} .

ALLOWED PARAMETER SPACE

- Benchmarks for correlated sin αv_t range. Exclusions from Higgs selfcoupling κ_h does not exist in the alignment with decoupling limit.
- → The limits are stronger in the $m_3 > m_5$ limit similar to previous case.
- The most stringent bound comes from charged Higgs to WZ channel.
 No lower limit 45 Om unita and B35, B5 < m3 GeV</p>

FUTURE PROJECTIONS

- Combination of future Higgs precision data with direct VBF search can reduce the parameter space even further.
- The null observation of nonstandard Higgs searches from VBF production is not 'null'. It provides important insights about the composition of EW vev.

VBF searches for new scalars can give complementary bounds on the non doublet contribution to the electroweak vev.

BACK UPS

The scalar potential is

$$V(\Phi, X) = \frac{\mu_{\phi}^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_X^2}{2} \operatorname{Tr}(X^{\dagger} X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(X^{\dagger} X) + \lambda_3 \operatorname{Tr}(X^{\dagger} X X^{\dagger} X) + \lambda_4 [\operatorname{Tr}(X^{\dagger} X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger} \tau_a \Phi \tau_b) \operatorname{Tr}(X^{\dagger} t_a X t_b) - M_1 \operatorname{Tr}(\Phi^{\dagger} \tau_a \Phi \tau_b) (U X U^{\dagger})_{ab} - M_2 \operatorname{Tr}(X^{\dagger} t_a X t_b) (U X U^{\dagger})_{ab},$$

with $\tau_a \equiv \sigma_a/2$, (a = 1, 2, 3) where σ_a 's are the Pauli matrices and t_a 's are the generators of the triplet representation of $SU(2)_L$ and are given by,

$$t_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad t_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad t_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$
(3)

S PARAMETER AND HIGGS SELF-COUPLING

$$\begin{split} \kappa_{\lambda} &\equiv \frac{\lambda_{hhh}}{(\lambda_{hhh})^{\text{SM}}} &= \cos^{3}\alpha \sec\beta + \frac{2\sqrt{2}}{\sqrt{3}}\sin^{3}\alpha \csc\beta + \frac{2\Lambda_{1}^{2}}{m_{h}^{2}}\sin^{2}\alpha \cos\beta \left(\cos\alpha - \frac{\sqrt{2}}{\sqrt{3}}\sin\alpha \cot\beta\right) \\ &+ \frac{\sqrt{2}}{3\sqrt{3}}\frac{\Lambda_{2}^{2}}{m_{h}^{2}}\sin^{3}\alpha \csc\beta \,. \end{split}$$

THEORETICAL CONSTRAINTS: UNITARITY

The unitarity conditions can be trivially satisfied in the `Decoupling limit'

and $\sin 2\alpha \approx \sqrt{\frac{3}{2}} \sin 2\beta$ with $v_t \ll v$ $m_H^2 \approx m_3^2 \approx m_5^2 \approx \Lambda_1^2 \gg v^2$; $\Lambda_2^2 \ll v^2$.

$$\Lambda_1^2 = \frac{M_1 v}{\sqrt{2} \sin \beta} \equiv \frac{M_1 v^2}{4v_t},$$

$$\Lambda_2^2 = 3\sqrt{2} v M_2 \sin \beta \equiv 12 v_t M_2.$$

NONSTANDARD HIGGS DECAY

 $m_3 > m_5$ $m_5 > m_3$ $H_3^\circ \neq , H_3^\dagger W^\dagger$ H_5^0 \mathbb{ZZ} H1 WT $H_5^{++} \rightarrow W^+ W^ H_3 W', H_3 Z$ $H_5^+ \rightarrow W^+ \neq$ $H_3^+ \rightarrow H_5^+ 2, H_5^2 2$ $H_3^0 \rightarrow$ H2 -) tb H 22, H

