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SM HIGGS SEARCHES

DARK MATTER, MATTER-
ANTIMATTER ASYMMETRY, 

NONZERO NEUTRINO MASS ETC.
CALLS FOR 

BSM PHYSICS.
OFTEN COMES WITH 

EXTENSION OF THE HIGGS 
SECTOR.



ELECTROWEAK SYMMETRY BREAKING
THE ELECTROWEAK SYMMETRY BREAKING IS DRIVEN BY ONLY ONE HIGGS DOUBLET 
IN THE STANDARD MODEL.

ONE SM HIGGS BOSON AND THE LHC DATA RESEMBLES THE SM NATURE

WHAT KIND OF MULTIPLETS CONTRIBUTE TO THE ELECTROWEAK VEV AND TO 
WHAT DEGREE??

SU(2)L

The Electroweak vacuum expectation value 
(vev) is estimated by measuring the Fermi 
Constant

GF =
1

2v2



INSIGHT INTO THE COMPOSITION OF ELECTROWEAK VEV
Nonstandard contribution to EW vev can only arise from scalar 
multiplets transforming non-trivially under SM SU(2).

Scalar singlets 

Neutral singlets do not 
couple to  W/Z bosons. 
Their vevs do not 
contribute to EW vev.

Charged singlets do not 
develop VEVs.



INSIGHT INTO THE COMPOSITION OF ELECTROWEAK VEV

In certain cases, constraints can arise from EW -parameter : 
Example- Higgs Triplet Model. 

ρ

GF =
1�
2v2

 � = 1
Higher multiplets can be arranged such that
            at the tree-level.

Restoring custodial
symmetry (GM model)

accidental cancellation.

parameter.

What kind of SU(2) scalar multiplets contribute to the EW vev 
and to what degree?

How can we probe the composition of the EW vacuum expectation 
value (vev) ?

The Electroweak vev is estimated by measuring the Fermi Constant 

There are still some interesting questions that can be asked!

Example, Higgs triplet model
In certain cases, constraints can arise from the EW �

Ref: Chiang and Yagyu '18

Ref: Georgi and Machacek '1985

Scope for further research 

How much the non-doublet contribution is there in the EW vev?

Hence, the constraints from the -parameter will not be effective in 
constraining the vevs from these multiplets. 

ρ



IMPLICATIONS FROM VBF SEARCHES : AN ALTERNATIVE PROBE
Non-standard scalar searches in the vector-boson fusion processes can be 
crucial.

Dimensionful couplings

HVμVμ ∼ gvH

: Vev of the scalar multiplet 
from which H is primarily 
derived!

vH

Higher vev  enhances the observational prospects of HvH

NON-OBSERVATION OF H LEADS TO AN 
UPPER BOUND ON  (MASS DEPENDENT) vH

Multihiggs 
doublet  

HVV coupling 
vanishes in the 
‘alignment limit’.



EXAMPLE BSM 
GEORGI-MACHACEK MODEL



feature of this model is that the members of the custodial fiveplet do not couple to the SM fermions at tree
level. Thus, the dominant direct bounds on the common mass of the custodial fiveplet can be obtained from
the LHC searches looking for nonstandard bosons in VBF production processes, making these searches tailor-
made for this model. In addition to collider data, we also consider the theoretical constraints from perturbative
unitarity and boundedness-from-below (BFB) conditions on the potential. A suitable reparametrization of the
trilinear couplings of the scalar potential is prescribed, making way for e�cient phenomenological analysis. We
show that the decoupling limit of the GM model can be expressed in terms of simple correlations among the
physical masses, mixing angles and the triplet VEV. We also take into consideration the bounds coming from
the measurement of the properties of 125 GeV Higgs boson, which we identify as the lightest CP-even custodial
singlet boson h present in the GM model. In our analysis, we demonstrate that the VBF searches can provide
complementary constraints to the theoretical bounds on the model parameter space. We also give estimates for
the potential of the future colliders such as the high luminosity- (HL-) LHC, Future Circular colliders (FCC)
etc. to constrain the remaining parameter space further. We explicitly show that the projected limits from the
HL-LHC VBF searches for new scalar resonances in combination with the theoretical constraints will practically
push the GM model towards the decoupling limit, imposing stringent constraints on the triplet contribution to
the electroweak VEV.

Analyses trying to constrain the GM model parameter space from the LHC Run-II data have been performed
earlier in the literature [22–37]. Our analysis supersedes them by including the full Run-II data set for the
diboson resonance searches, some of which were not available during the time of the previous analyses. Apart
from the direct collider searches, we employ the latest measurement of the trilinear Higgs self-coupling to provide
complementary constraints on the GM model parameter space. Another important feature of our analysis is
the simple parametrization of the input variables in terms of physical quantities resulting in a more direct
interpretation of the phenomenological results.

The plan of our paper is as follows. In Sec. 2, we briefly review the GM model. In Sec. 3, we discuss the
theoretical constraints on the model from perturbative unitarity and BFB requirements of the potential. Here
we also formulate correlations among the physical parameters corresponding to the decoupling limit of the
model. Constraints from the 125 GeV Higgs signal strength measurements are described in Sec. 4.1. In Sec. 4.2
we describe the impact of the direct search constraints from the LHC on the parameter space of the GM model.
The prospect for future colliders like the HL-LHC to further constrain this scenario is discussed in Sec. 4.3.
Finally, we summarize our findings in Sec. 5.

2 A brief recap of the GM Model

The GM model extends the scalar sector of the SM, consisting of the Y = 1 complex doublet � ⌘ (�+
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0)|,

by adding two SU(2)L triplet scalar fields, one real ⇠ ⌘ (⇠+ ⇠
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�)| and one complex � ⌘ (�++
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with hypercharges Y = 0 and Y = 2 respectively [14–16]. The scalar sector of this model is conventionally
expressed in terms of a bi-doublet � and a bi-triplet X, defined as,
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The scalar potential for this model can be written as [27, 38]
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with ⌧a ⌘ �a/2, (a = 1, 2, 3) where �a’s are the Pauli matrices and ta’s are the generators of the triplet
representation of SU(2)L and are given by,
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GEORGI-MACHACEK MODEL
Consists of a one SU(2) complex doublet  (Y=1), one real triplet (Y=0) and one complex 
triplet (Y=1)

The matrix U appearing in the trilinear terms of Eq. (2) is given by,
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After the EWSB, the neutral components of the bi-doublet and the bi-triplet are expanded around their VEVs
as,

�
0 =

1
p
2
(vd + hd + i⌘d) , ⇠

0 = (vt + h⇠) , �
0 =

✓
vt +

h� + i⌘�
p
2

◆
. (5)

The requirement of equal VEVs to the real and the complex triplets ensures that custodial symmetry in the
scalar potential remains intact. From the expressions of W and Z boson masses, the electroweak VEV can be
identified as

q
v
2
d
+ 8v2

t
= v = 246 GeV . (6)

Thus, there will be two independent minimization conditions for the scalar potential corresponding to the two
VEVs of the bi-doublet and the bi-triplet (vd and vt). These can be used to extract the bilinear coe�cients of
the potential µ2

�
and µ

2
X

in terms of vd and vt as follows,

µ
2
�

= �4�1v
2
d
� 3 (2�2 � �5) v

2
t
+

3

2
M1vt , (7a)

µ
2
X

= � (2�2 � �5) v
2
d
� 4 (�3 + 3�4) v

2
t
+

M1v
2
d

4vt
+ 6M2vt . (7b)

Now, the bilinear terms in the scalar potential can be diagonalized to obtain the physical Higgs scalars of
the model which can be classified according to their transformation properties under the custodial SU(2) as a
quintuplet (H++

5 , H
+
5 , H

0
5 , H

�
5 , H

��
5 ) with common mass m5, a triplet (H+

3 , H0, H
�
3 ) of common mass m3 and

two custodial singlets, h and H with masses mh and mH respectively. In this article, we refrain ourselves from
giving a detailed description of the diagonalization procedure and we refer the reader to Refs. [38,39]. The mass
eigenstates for the charged and neutral scalars are defined below:1
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The angle ↵ represents the mixing angle in the neutral Higgs sector while tan� is defined as
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It can be observed from Eq. (8) that the members of the custodial fiveplet are composed entirely of SU(2)L
scalar triplets without any admixture from the doublets. Considering the fact that the SM fermions can couple
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* Q = T3 + Y



feature of this model is that the members of the custodial fiveplet do not couple to the SM fermions at tree
level. Thus, the dominant direct bounds on the common mass of the custodial fiveplet can be obtained from
the LHC searches looking for nonstandard bosons in VBF production processes, making these searches tailor-
made for this model. In addition to collider data, we also consider the theoretical constraints from perturbative
unitarity and boundedness-from-below (BFB) conditions on the potential. A suitable reparametrization of the
trilinear couplings of the scalar potential is prescribed, making way for e�cient phenomenological analysis. We
show that the decoupling limit of the GM model can be expressed in terms of simple correlations among the
physical masses, mixing angles and the triplet VEV. We also take into consideration the bounds coming from
the measurement of the properties of 125 GeV Higgs boson, which we identify as the lightest CP-even custodial
singlet boson h present in the GM model. In our analysis, we demonstrate that the VBF searches can provide
complementary constraints to the theoretical bounds on the model parameter space. We also give estimates for
the potential of the future colliders such as the high luminosity- (HL-) LHC, Future Circular colliders (FCC)
etc. to constrain the remaining parameter space further. We explicitly show that the projected limits from the
HL-LHC VBF searches for new scalar resonances in combination with the theoretical constraints will practically
push the GM model towards the decoupling limit, imposing stringent constraints on the triplet contribution to
the electroweak VEV.

Analyses trying to constrain the GM model parameter space from the LHC Run-II data have been performed
earlier in the literature [22–37]. Our analysis supersedes them by including the full Run-II data set for the
diboson resonance searches, some of which were not available during the time of the previous analyses. Apart
from the direct collider searches, we employ the latest measurement of the trilinear Higgs self-coupling to provide
complementary constraints on the GM model parameter space. Another important feature of our analysis is
the simple parametrization of the input variables in terms of physical quantities resulting in a more direct
interpretation of the phenomenological results.

The plan of our paper is as follows. In Sec. 2, we briefly review the GM model. In Sec. 3, we discuss the
theoretical constraints on the model from perturbative unitarity and BFB requirements of the potential. Here
we also formulate correlations among the physical parameters corresponding to the decoupling limit of the
model. Constraints from the 125 GeV Higgs signal strength measurements are described in Sec. 4.1. In Sec. 4.2
we describe the impact of the direct search constraints from the LHC on the parameter space of the GM model.
The prospect for future colliders like the HL-LHC to further constrain this scenario is discussed in Sec. 4.3.
Finally, we summarize our findings in Sec. 5.
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only to the doublet component, the members of the custodial fiveplet will not have any tree level coupling to
the SM fermions. Thus, the dominant production mode available for these particles at the LHC is via the VBF
process, making the VBF searches essential to probe the properties of such particles.

Before closing this section we note from Eq. (2) that there are nine parameters in the GM scalar potential with
two bilinears (µ2

�
and µ

2
X
), five quartic couplings (�i, i = 1, . . . , 5) and two trilinear couplings (M1 and M2).

Among these, the bilinears can be replaced by the VEVs, vd and vt using Eq. (7). The five quartic couplings
can also be exchanged for the four physical scalar masses, m5, m3, mH and mh and the mixing angle, ↵. Below,
we present the relation between the �i-s with the physical masses and mixings [27] :
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We wish to reiterate that in our analysis we consider h to be the lightest CP -even scalar corresponding to
the Higgs boson discovered at the LHC with mass mh ⇡ 125 GeV. In this study we will focus on the VBF
production of the nonstandard GM scalars at the LHC.

3 Theoretical constraints and the decoupling limit

To motivate the benchmark choices for our phenomenological analysis later, it is important to discuss the
implications of the theoretical constraints from tree-unitarity and BFB [38,40]. We will present our observations
in terms of the physical masses and mixings and focus on formulating a systematic method to approach the
SM-like limit a.k.a. the decoupling limit [38]. It is quite intuitive that the decoupling limit will be achieved
when vt ⌧ v and all the nonstandard scalars are much heavier than the electroweak scale. Since this has been
already discussed in Ref. [38], we will be brief and report only the important relations relevant to our present
study. The distinct upshot of our analysis is that the relations we obtain involve only the physical parameters
and therefore are quite straightforward to implement into the numerical codes, giving us a greater control over
the parameters required for the phenomenological studies.
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With these reparametrizations let us now investigate the unitarity conditions. Theoretical constraints from
perturbative unitarity put upper bounds on the eigenvalues of the 2 ! 2 scalar scattering amplitude matrix.
The eigenvalues can be expressed in terms of certain independent combinations of the scalar quartic couplings,
given as [38, 40],
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GEORGI-MACHACEK MODEL
The quartic couplings in terms of the physical mass and mixings:

Seven Lagrangian 
parameters. Two bilinears, 

five quartic couplings.

Two vevs , 4 physical 
scalar masses 

 and one 
mixing angle .

(vt , vd)

(m5, , m3 , mH , mh)
α

Two trilinear couplings  are independent parametersM1 & M2

The matrix U appearing in the trilinear terms of Eq. (2) is given by,

U =
1
p
2

0

@
�1 0 1
�i 0 �i

0
p
2 0

1

A . (4)

After the EWSB, the neutral components of the bi-doublet and the bi-triplet are expanded around their VEVs
as,

�
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p
2
(vd + hd + i⌘d) , ⇠

0 = (vt + h⇠) , �
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✓
vt +

h� + i⌘�
p
2

◆
. (5)

The requirement of equal VEVs to the real and the complex triplets ensures that custodial symmetry in the
scalar potential remains intact. From the expressions of W and Z boson masses, the electroweak VEV can be
identified as

q
v
2
d
+ 8v2

t
= v = 246 GeV . (6)

Thus, there will be two independent minimization conditions for the scalar potential corresponding to the two
VEVs of the bi-doublet and the bi-triplet (vd and vt). These can be used to extract the bilinear coe�cients of
the potential µ2

�
and µ

2
X

in terms of vd and vt as follows,
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Now, the bilinear terms in the scalar potential can be diagonalized to obtain the physical Higgs scalars of
the model which can be classified according to their transformation properties under the custodial SU(2) as a
quintuplet (H++

5 , H
+
5 , H

0
5 , H

�
5 , H

��
5 ) with common mass m5, a triplet (H+

3 , H0, H
�
3 ) of common mass m3 and

two custodial singlets, h and H with masses mh and mH respectively. In this article, we refrain ourselves from
giving a detailed description of the diagonalization procedure and we refer the reader to Refs. [38,39]. The mass
eigenstates for the charged and neutral scalars are defined below:1
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5 , (8e)

H = � sin↵ hd + cos↵ H
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5 , (8f)

where

H
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r
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3
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r
2

3
h� . (9)

The angle ↵ represents the mixing angle in the neutral Higgs sector while tan� is defined as

tan� =
2
p
2vt
vd

. (10)

It can be observed from Eq. (8) that the members of the custodial fiveplet are composed entirely of SU(2)L
scalar triplets without any admixture from the doublets. Considering the fact that the SM fermions can couple

1
Note that our convention of ↵ di↵ers from that of Ref. [38] by a negative sign.
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THEORETICAL CONSTRAINTS: UNITARITY

Figure 1: Allowed regions from the combined constraints of unitarity and BFB in the limit vt ⌧ v. The
location of the narrow peak correspond to the decoupling limit defined by Eq. (17a).
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y2 = 4�3 + 8�4 , (13d)

y3 = 4�2 � �5 , (13e)

y4 = 4�2 + 2�5 , (13f)

y5 = 4�2 � 4�5 . (13g)

The theoretical constraints from perturbative unitarity requires that each of these eigenvalues must obey the
condition |x

±
i
|, |yi|  8⇡.

To illustrate the implications of the decoupling limit, we take the example of |y2|  8⇡ which, in terms of the
physical parameters, reduces to
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In the decoupling limit when vt ⌧ v, i.e., sin2 � ⌧ 1, the above relation will be extremely constraining and will
e↵ectively reduce to the following equality:
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The conditions |y1|  8⇡ and |y3�y5|  16⇡ will also have similar implications which we do not show explicitly2.

Another type of constraint will arise from conditions like |y3|  8⇡ which reduces to
�����m

2
3 �

p
2

p
3

�
m

2
H
�m

2
h

� sin 2↵
sin 2�

�����  4⇡v2 . (16)

Similar constraints can be obtained from |y4|, |y5|  8⇡. A common feature of all these constraints is the
occurrence of the ratio (sin 2↵/ sin 2�) which blows up in the limit sin� ⌧ 1 and thus jeopardizes the unitarity
conditions for m

2
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� v
2. Therefore, imposition of the unitarity conditions will entail a correlation between

sin↵ and sin� so that constraints like Eq. (16) can be satisfied even for vt ⌧ v. From the example conditions
of Eqs. (15) and (16), one may intuitively infer that the unitarity conditions will be trivially satisfied for
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The conditions |y3|, |y5|  8⇡ can be combined to obtain |y3 � y5|  16⇡ using the triangle inequality.
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only to the doublet component, the members of the custodial fiveplet will not have any tree level coupling to
the SM fermions. Thus, the dominant production mode available for these particles at the LHC is via the VBF
process, making the VBF searches essential to probe the properties of such particles.

Before closing this section we note from Eq. (2) that there are nine parameters in the GM scalar potential with
two bilinears (µ2

�
and µ

2
X
), five quartic couplings (�i, i = 1, . . . , 5) and two trilinear couplings (M1 and M2).

Among these, the bilinears can be replaced by the VEVs, vd and vt using Eq. (7). The five quartic couplings
can also be exchanged for the four physical scalar masses, m5, m3, mH and mh and the mixing angle, ↵. Below,
we present the relation between the �i-s with the physical masses and mixings [27] :
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We wish to reiterate that in our analysis we consider h to be the lightest CP -even scalar corresponding to
the Higgs boson discovered at the LHC with mass mh ⇡ 125 GeV. In this study we will focus on the VBF
production of the nonstandard GM scalars at the LHC.

3 Theoretical constraints and the decoupling limit

To motivate the benchmark choices for our phenomenological analysis later, it is important to discuss the
implications of the theoretical constraints from tree-unitarity and BFB [38,40]. We will present our observations
in terms of the physical masses and mixings and focus on formulating a systematic method to approach the
SM-like limit a.k.a. the decoupling limit [38]. It is quite intuitive that the decoupling limit will be achieved
when vt ⌧ v and all the nonstandard scalars are much heavier than the electroweak scale. Since this has been
already discussed in Ref. [38], we will be brief and report only the important relations relevant to our present
study. The distinct upshot of our analysis is that the relations we obtain involve only the physical parameters
and therefore are quite straightforward to implement into the numerical codes, giving us a greater control over
the parameters required for the phenomenological studies.

To begin with, we suggestively reparametrize the trilinear coupling parameters M1 and M2 as follows:
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With these reparametrizations let us now investigate the unitarity conditions. Theoretical constraints from
perturbative unitarity put upper bounds on the eigenvalues of the 2 ! 2 scalar scattering amplitude matrix.
The eigenvalues can be expressed in terms of certain independent combinations of the scalar quartic couplings,
given as [38, 40],
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the Higgs boson discovered at the LHC with mass mh ⇡ 125 GeV. In this study we will focus on the VBF
production of the nonstandard GM scalars at the LHC.
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implications of the theoretical constraints from tree-unitarity and BFB [38,40]. We will present our observations
in terms of the physical masses and mixings and focus on formulating a systematic method to approach the
SM-like limit a.k.a. the decoupling limit [38]. It is quite intuitive that the decoupling limit will be achieved
when vt ⌧ v and all the nonstandard scalars are much heavier than the electroweak scale. Since this has been
already discussed in Ref. [38], we will be brief and report only the important relations relevant to our present
study. The distinct upshot of our analysis is that the relations we obtain involve only the physical parameters
and therefore are quite straightforward to implement into the numerical codes, giving us a greater control over
the parameters required for the phenomenological studies.

To begin with, we suggestively reparametrize the trilinear coupling parameters M1 and M2 as follows:

⇤2
1 =

M1v
p
2 sin�

⌘
M1v

2

4vt
, (12a)

⇤2
2 = 3

p
2 vM2 sin� ⌘ 12 vtM2 . (12b)

With these reparametrizations let us now investigate the unitarity conditions. Theoretical constraints from
perturbative unitarity put upper bounds on the eigenvalues of the 2 ! 2 scalar scattering amplitude matrix.
The eigenvalues can be expressed in terms of certain independent combinations of the scalar quartic couplings,
given as [38, 40],

x
±
1 = 12�1 + 14�3 + 22�4 ±

q
(12�1 � 14�3 � 22�4)

2 + 144�2
2 , (13a)

x
±
2 = 4�1 � 2�3 + 4�4 ±

q
(4�1 + 2�3 � 4�4)

2 + 4�2
5 , (13b)

5

Figure 1: Allowed regions from the combined constraints of unitarity and BFB in the limit vt ⌧ v. The
location of the narrow peak correspond to the decoupling limit defined by Eq. (17a).
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y3 = 4�2 � �5 , (13e)

y4 = 4�2 + 2�5 , (13f)

y5 = 4�2 � 4�5 . (13g)

The theoretical constraints from perturbative unitarity requires that each of these eigenvalues must obey the
condition |x

±
i
|, |yi|  8⇡.

To illustrate the implications of the decoupling limit, we take the example of |y2|  8⇡ which, in terms of the
physical parameters, reduces to
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In the decoupling limit when vt ⌧ v, i.e., sin2 � ⌧ 1, the above relation will be extremely constraining and will
e↵ectively reduce to the following equality:
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The conditions |y1|  8⇡ and |y3�y5|  16⇡ will also have similar implications which we do not show explicitly2.

Another type of constraint will arise from conditions like |y3|  8⇡ which reduces to
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Similar constraints can be obtained from |y4|, |y5|  8⇡. A common feature of all these constraints is the
occurrence of the ratio (sin 2↵/ sin 2�) which blows up in the limit sin� ⌧ 1 and thus jeopardizes the unitarity
conditions for m

2
H

� v
2. Therefore, imposition of the unitarity conditions will entail a correlation between

sin↵ and sin� so that constraints like Eq. (16) can be satisfied even for vt ⌧ v. From the example conditions
of Eqs. (15) and (16), one may intuitively infer that the unitarity conditions will be trivially satisfied for
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The conditions |y3|, |y5|  8⇡ can be combined to obtain |y3 � y5|  16⇡ using the triangle inequality.
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Variants of the GM model without the trilinear couplings M1 and M2, do 
not have a decoupling limit. D. Das, IS  ‘PRD 98, 095010, 2018
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Figure 1: Allowed regions from the combined constraints of unitarity and BFB in the limit vt ⌧ v. The
location of the narrow peak correspond to the decoupling limit defined by Eq. (17a).
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Figure 2: Points allowed by the theoretical constraints of perturbative unitarity and BFB constraints. In the
left panel we have assumed Eq. (18) to correlate sin↵ and vt. The dashed black line represents the conservative
bound given by Eq. (23). In the right panel di↵erent benchmark values of sin↵ are chosen, which are unrelated
to vt. The di↵erent colors in the right panel correspond to di↵erent values of sin↵ mentioned in the legends.
The gray points in the left panel are excluded when we impose the additional constraint from �S. As can be
seen from the left panel, the constraint from �S starts to become relevant for vt & 50 GeV. In the right panel,
�S does not impose any additional restriction for the displayed region of parameter space.

Eq. (17) defines the decoupling limit in the GM model. Using the definition of tan� in Eq. (10), we may simplify
Eq. (17a) as

sin↵ ⇡ 2
p
3
vt

v
, (18)

which will often be used as benchmark for our phenomenological analysis. A visual confirmation of Eq. (17a)
is given in Fig. 1 where we see that, for vt ⌧ v, heavy nonstandard scalars beyond the TeV scale would require
sin↵ to be strongly correlated to vt. Such a correlation is not unique to the GM model and can be found in the
usual HTM as well [41].

It should be noted that in the decoupling limit defined by Eq. (17), the quartic couplings of Eq. (11) take much
simpler forms as follows:

�1 ⇡
m

2
h

8v2
, �2 ⇡ �5 ⇡ 0 . (19)

Thus, only some of the quartic coe�cients survive in the decoupling limit and �1 approaches the SM value.
Additionally, since the doublet-triplet mixing is also vanishingly small in the decoupling limit, the physical
scalar h, defined in Eq. (8e), will have SM-like couplings and can play the role of the SM-like Higgs boson
observed at the LHC [7,8]. Also comparing Eqs. (12a) and (17b) we see that a small triplet VEV is intimately
connected to large nonstandard scalar masses, which carries the reminiscence of a type II seesaw mechanism.

Another interesting point to note from Eqs. (12) and (17) is that the trilinear coupling M1 plays a crucial role in
ensuring safe decoupling of the nonstandard scalars. Therefore, variants of the GM model without the trilinear
couplings M1 and M2, do not have a decoupling limit and therefore can be ruled out rather easily [27].

Next we display in Fig. 2 the points that pass the combined constraints arising from unitarity and BFB. We
exhibit results for the cases when Eq. (18) is satisfied as well as when sin↵ and vt are unrelated. If sin↵ and
vt are unrelated then, as expected, the decoupling limit cannot be achieved and as a result we see in the right
panel of Fig. 2 that a substantial area in the low vt region is excluded. We would like to comment here that our
result agrees with Ref. [38] with regards to the exclusion from the perturbative unitarity and BFB requirements.
The forbidden region in the upper right corners of Fig. 2 can be qualitatively understood from the trilinear

7

Different benchmark values 
for  un-correlated to  

leads to a lower bound on .
sin α vt

vt

Figure 1: Allowed regions from the combined constraints of unitarity and BFB in the limit vt ⌧ v. The
location of the narrow peak correspond to the decoupling limit defined by Eq. (17a).

y1 = 16�3 + 8�4 , (13c)

y2 = 4�3 + 8�4 , (13d)

y3 = 4�2 � �5 , (13e)

y4 = 4�2 + 2�5 , (13f)

y5 = 4�2 � 4�5 . (13g)
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condition |x
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occurrence of the ratio (sin 2↵/ sin 2�) which blows up in the limit sin� ⌧ 1 and thus jeopardizes the unitarity
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Now, the bilinear terms in the scalar potential can be diagonalized to obtain the physical Higgs scalars of
the model which can be classified according to their transformation properties under the custodial SU(2) as a
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two custodial singlets, h and H with masses mh and mH respectively. In this article, we refrain ourselves from
giving a detailed description of the diagonalization procedure and we refer the reader to Refs. [38,39]. The mass
eigenstates for the charged and neutral scalars are defined below:1
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It can be observed from Eq. (8) that the members of the custodial fiveplet are composed entirely of SU(2)L
scalar triplets without any admixture from the doublets. Considering the fact that the SM fermions can couple
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The theoretical constraints from perturbative unitarity requires that each of these eigenvalues must obey the
condition |x
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Similar constraints can be obtained from |y4|, |y5|  8⇡. A common feature of all these constraints is the
occurrence of the ratio (sin 2↵/ sin 2�) which blows up in the limit sin� ⌧ 1 and thus jeopardizes the unitarity
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2. Therefore, imposition of the unitarity conditions will entail a correlation between
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Figure 2: Points allowed by the theoretical constraints of perturbative unitarity and BFB constraints. In the
left panel we have assumed Eq. (18) to correlate sin↵ and vt. The dashed black line represents the conservative
bound given by Eq. (23). In the right panel di↵erent benchmark values of sin↵ are chosen, which are unrelated
to vt. The di↵erent colors in the right panel correspond to di↵erent values of sin↵ mentioned in the legends.
The gray points in the left panel are excluded when we impose the additional constraint from �S. As can be
seen from the left panel, the constraint from �S starts to become relevant for vt & 50 GeV. In the right panel,
�S does not impose any additional restriction for the displayed region of parameter space.

Eq. (17) defines the decoupling limit in the GM model. Using the definition of tan� in Eq. (10), we may simplify
Eq. (17a) as

sin↵ ⇡ 2
p
3
vt

v
, (18)

which will often be used as benchmark for our phenomenological analysis. A visual confirmation of Eq. (17a)
is given in Fig. 1 where we see that, for vt ⌧ v, heavy nonstandard scalars beyond the TeV scale would require
sin↵ to be strongly correlated to vt. Such a correlation is not unique to the GM model and can be found in the
usual HTM as well [41].

It should be noted that in the decoupling limit defined by Eq. (17), the quartic couplings of Eq. (11) take much
simpler forms as follows:

�1 ⇡
m

2
h

8v2
, �2 ⇡ �5 ⇡ 0 . (19)

Thus, only some of the quartic coe�cients survive in the decoupling limit and �1 approaches the SM value.
Additionally, since the doublet-triplet mixing is also vanishingly small in the decoupling limit, the physical
scalar h, defined in Eq. (8e), will have SM-like couplings and can play the role of the SM-like Higgs boson
observed at the LHC [7,8]. Also comparing Eqs. (12a) and (17b) we see that a small triplet VEV is intimately
connected to large nonstandard scalar masses, which carries the reminiscence of a type II seesaw mechanism.

Another interesting point to note from Eqs. (12) and (17) is that the trilinear coupling M1 plays a crucial role in
ensuring safe decoupling of the nonstandard scalars. Therefore, variants of the GM model without the trilinear
couplings M1 and M2, do not have a decoupling limit and therefore can be ruled out rather easily [27].

Next we display in Fig. 2 the points that pass the combined constraints arising from unitarity and BFB. We
exhibit results for the cases when Eq. (18) is satisfied as well as when sin↵ and vt are unrelated. If sin↵ and
vt are unrelated then, as expected, the decoupling limit cannot be achieved and as a result we see in the right
panel of Fig. 2 that a substantial area in the low vt region is excluded. We would like to comment here that our
result agrees with Ref. [38] with regards to the exclusion from the perturbative unitarity and BFB requirements.
The forbidden region in the upper right corners of Fig. 2 can be qualitatively understood from the trilinear
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The theoretical constraints from perturbative unitarity requires that each of these eigenvalues must obey the
condition |x

±
i
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The requirement of equal VEVs to the real and the complex triplets ensures that custodial symmetry in the
scalar potential remains intact. From the expressions of W and Z boson masses, the electroweak VEV can be
identified as
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Thus, there will be two independent minimization conditions for the scalar potential corresponding to the two
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Now, the bilinear terms in the scalar potential can be diagonalized to obtain the physical Higgs scalars of
the model which can be classified according to their transformation properties under the custodial SU(2) as a
quintuplet (H++
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5 ) with common mass m5, a triplet (H+

3 , H0, H
�
3 ) of common mass m3 and

two custodial singlets, h and H with masses mh and mH respectively. In this article, we refrain ourselves from
giving a detailed description of the diagonalization procedure and we refer the reader to Refs. [38,39]. The mass
eigenstates for the charged and neutral scalars are defined below:1
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The angle ↵ represents the mixing angle in the neutral Higgs sector while tan� is defined as
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It can be observed from Eq. (8) that the members of the custodial fiveplet are composed entirely of SU(2)L
scalar triplets without any admixture from the doublets. Considering the fact that the SM fermions can couple

1
Note that our convention of ↵ di↵ers from that of Ref. [38] by a negative sign.
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In the decoupling limit . It crucially 
depends on how  is approached. Defines 

‘alignment with or without decoupling’.

κ3+ , κ5+ , κ5++ ≈ 0
sin α → 0

couplings of the Higgs bosons with a pair of W -bosons. Let us express these couplings as follows:3
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where S represents a generic scalar, g denotes the SU(2)L gauge coupling strength and the ’s are given as,
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It is instructive to verify that these coupling modifiers obey the unitarity sum rule [42]
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The Lee-Quigg-Thacker bound on the Higgs boson masses [43], in this context, should thus read
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This inequality gives rise to a conservative bound from perturbative unitarity which can qualitatively explain
the forbidden region in the upper-right corner of Fig. 2. We show this bound as a black dashed line in the left
panel of Fig. 2.

To make the notion of decoupling more explicit, we calculate the trilinear couplings of the SM-like Higgs, h,
with a pair of charged scalars in the limit of Eq. (17a). In particular, the factors that control the contributions
of the charged scalar loops in decays like h ! �� and h ! Z� are given by [44]
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where Eq. (17a) has been assumed. Clearly, when Eq. (17b) is also imposed, we will have 3+ ,5+ ,5++ ⇡ 0
implying that the charged scalars are decoupled from the loop-induced Higgs decays in the limit of Eq. (17), as
expected. In this context it should be emphasized that the expressions of Eq. (24) crucially depend on how the
limit sin↵ ! 0 is approached. For example, instead of Eq. (17a), if we first apply sin↵ ⇡ 0 independent of vt
and then take vt ⌧ v, then we would obtain
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which do not lead to proper decoupling of the heavy charged scalars. Therefore, to ensure safe decoupling of
the nonstandard scalars one must approach sin↵ ! 0 limit in the way dictated by Eq. (17a).
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.
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The conditions |y1|  8⇡ and |y3�y5|  16⇡ will also have similar implications which we do not show explicitly2.

Another type of constraint will arise from conditions like |y3|  8⇡ which reduces to
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Similar constraints can be obtained from |y4|, |y5|  8⇡. A common feature of all these constraints is the
occurrence of the ratio (sin 2↵/ sin 2�) which blows up in the limit sin� ⌧ 1 and thus jeopardizes the unitarity
conditions for m

2
H

� v
2. Therefore, imposition of the unitarity conditions will entail a correlation between

sin↵ and sin� so that constraints like Eq. (16) can be satisfied even for vt ⌧ v. From the example conditions
of Eqs. (15) and (16), one may intuitively infer that the unitarity conditions will be trivially satisfied for
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2
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2
The conditions |y3|, |y5|  8⇡ can be combined to obtain |y3 � y5|  16⇡ using the triangle inequality.

6

Higgs trilinear couplings with the charged scalars will contribute to loop 
induced Higgs decay

h



LHC CONSTRAINTS   



the Higgs boson couplings at the LHC. Both the ATLAS [9] and CMS [54] collaborations have studied various
production and decay modes of the 125 GeV Higgs boson, thereby giving limits on the signal strength observables
defined as,

µ
i

j
=

�
i

(�i)SM
⇥

BRj

(BRj)SM
, (32)

where �
i represents the production cross section in the i-th mode and BRj denotes the branching ratio into

the final state j.

We depict our results in Fig. 3 which shows the range of allowed values for vt with respect to sin↵, as obtained
after applying Higgs signal strength constraints. We show the regions allowed by the signal strengths for
gluon-gluon fusion (ggF) and VBF production modes as red and blue shaded regions respectively. We consider
constraints from the ff̄ and V V final states, f and V being the generic symbols for massive SM fermions and
vector bosons respectively. Additionally, we also take into account the constraint from the �� final state. The
allowed parameter space thus corresponds to the common region covered by the red and blue shaded zones. The
bottom line is that the Higgs signal strength data restricts vt to a finite region, putting clearly-defined upper
and lower limits on it for a fixed sin↵.

Figure 3: Allowed parameter space from Higgs signal strength measurements at 95% confidence level (C.L.) [9,
54]. For a fixed sin↵, vt is restricted to a finite region, with clear upper and lower limits.

4.2 Direct search constraints from the LHC

As mentioned in the introduction, the presence of a rich variety of nonstandard scalars makes the GM model
subject to various constraints coming from the nonstandard Higgs boson searches at the LHC. In this study
we focus mostly on the potential impact of the bounds coming from the VBF production of the custodial
fiveplet charged and neutral scalars. We also discuss direct search bounds on the custodial triplet and singlet
nonstandard Higgs bosons, namely H

±
3 , H0

3 and H. In the following, we briefly describe the most important
direct searches considered by us in this analysis.

• The ATLAS collaboration has performed searches for the VBF production of a neutral heavy resonance S0

decaying to Z-boson pairs in the leptonic final states [18]. The result is interpreted as a model-independent
upper bound on the production cross section times branching ratio (�VBF ⇥BR(S0 ! ZZ)) for the VBF
production process as a function of the resonance mass. This data can be e↵ective in constraining the
neutral member of the custodial fiveplet H0

5 as well as the custodial singlet H in the GM model.

• Searches for a charged Higgs boson have been performed in VBF production mode and its subsequent
decay into W

±
Z modes [20] and the null results have been translated into exclusion bounds on the signal

cross section as a function of the charged Higgs boson mass. This bound can be crucial to constrain the
properties of the charged Higgs state H

±
5 .
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The Higgs signal strength 
observables are defined as,

★ In the decoupling limit, the doublet-triplet mixing is vanishingly 
small and ‘h’ has SM-like couplings. 

★ The allowed parameter space corresponds to the common overlapping 
region. Higgs data thus restricts  to a finite region with clearly 
defined upper and lower limits on it for a fixed .
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NONSTANDARD HIGGS DECAY (NEUTRAL)

✤ Relevant signal channel for constraining  in the  limit. In 

the opposite mass hierarchy,  can be present. 

✤ The heavy Higgs H can also decay to ZZ but narrow width 
approximation works only for low mass region. 

H0
5 m3 > m5

H0
5 → H0

3 Z, H±
3 W∓



NONSTANDARD HIGGS DECAY (SINGLY CHARGED)

✤ Relevant signal channel for constraining  which dominantly decays 

to WZ in the  limit. 

✤ In the opposite mass hierarchy, decay modes of  diversified and 
additional decays into  final states are possible.

H+
5

m3 > m5

H±
5

H0
3W± , H±

3 Z



NONSTANDARD HIGGS DECAY (DOUBLY CHARGED)

✤ The doubly charged scalar  dominantly decays to same sign W 
bosons in the  limit. 

✤ In the opposite mass hierarchy, decay modes of  diversified and 
additional decays into  final states are possible.

H±
5 ±

m3 > m5

H±±
5

H±
3 W±



ALLOWED PARAMETER SPACEmode has half of the branching fraction to that of H0
5 ! ZZ. Thus, the bounds for H0

5 ! WW mode provides
no additional constraint on our parameter space.

Figure 4: Combined theoretical and experimental constraints on the m5-vt parameter plane for m5 < m3

hierarchy with sin↵ = 0.1 (left) and sin↵ = 0.3 (right). The excluded regions are shaded with various colors
explained in the text. The orange solid line corresponds to the correlation sin↵ = 2

p
3 vt/v. Beyond the green

band, the VBF searches dominate over Drell-Yan search channel and put nontrivial constraints on the parameter
space.

In Fig. 5 we show our allowed parameter region for mass hierarchy m5 > m3 for two benchmark values of sin↵.
In this case we present results for �m = m5 � m3 = 100 GeV, which plays a crucial role in determining the
branching ratios of the decaying particles. For m5 < m3 scenario considered earlier, the only possible decay
modes for H±

5 are those involving a pair of gauge bosons in the final state. However, here the decay modes of H±
5

become more diversified. Additional decays into H
±
5 ! H

0
3W

±, H±
5 ! H

±
3 Z final states are now kinematically

accessible, which decreases the signal strengths for H
±
5 ! W

±
Z mode, weakening the corresponding bounds.

Similarly, the presence of H0
5 ! H

0
3Z,H

±
3 W

⌥ modes results in the relaxation of the experimental constraint on
H

0
5 . Our choice of �m = 100 GeV serves as an illustrative benchmark to showcase the relaxation of the collider

constraints brought in by the opening up of the additional decay modes.

From Figs. 4 and 5, one may observe a slight variation of the cyan region with m5, as well as with the hierarchy
being considered. This may seem counterintuitive by looking at Eq. (26), which shows no apparent functional
dependence of � on m5. Such dependence of � on m5 is an indirect e↵ect generated by the perturbative
unitarity and BFB conditions which correlates the parameters ⇤1 and ⇤2 with values of m5 and m3.

In principle, the ATLAS data [18] should also translate as a lower limit on mH as a function of vt. Although
the H5ZZ and HZZ couplings are of similar magnitudes, the width-over-mass ratio for H tends to become
large (above 1%) in a significant region of parameter space, not respecting the narrow-width approximation.
On the other hand, the BR(H ! ZZ) gets suppressed in this case because of the presence of various other
decays including di-Higgs and fermionic modes which were not present for H0

5 . We have explicitly checked that,

the e↵ective cross section �(pp
VBF
���! H ! ZZ) lies well below the ATLAS sensitivity reach. The limits on H

from H ! hh searches can be e↵ective in constraining parameter spaces with sin� & 0.4 [29]8. In our scans,
this region lies inside the parameter space already excluded from other complementary constraints.

For the m3 < m5 hierarchy, the bounds on the charged Higgs boson H
±
3 must also be taken into account. Out of

the two pairs of charged Higgs bosons H±
3 and H

±
5 of the GM model, only the custodial triplet H±

3 can couple
to the SM fermions through its mixing with the doublet. Thus, H±

3 is likely to receive constraints from the
charged Higgs boson searches performed at the LHC. The ATLAS collaboration has published search results
for the production of charged Higgs bosons decaying to tb̄ final state [64]. The corresponding analysis by the
CMS collaboration, however, gives a much weaker bound [65]. In GM model the dominant production mode for

8
The custodial symmetry forbids couplings of the form H

0
5hh and H

0
3hh. Also, H

0
3 being a pseudoscalar provides an additional

reason not to give rise to the H
0
3hh coupling.
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Figure 5: Combined theoretical and experimental constraints on m5-vt parameter plane for m5 > m3 hierarchy
with �m = m5 �m3 = 100 GeV for sin↵ = 0.1 (left) and sin↵ = 0.3 (right). The excluded regions are shaded
with various colors explained in the text. The orange solid line corresponds to the correlation sin↵ = 2

p
3 vt/v.

The Drell-Yan search channels lose sensitivity beyond the green shaded region where VBF constraints can still
provide nontrivial constraints on the parameter space.

H
±
3 is in association with a tb̄ pair. There are two possible decay modes for H±

3 that dominates its total decay
width. BR(H±

3 ! tb̄) is dominant for smaller values of m3. However, BR(H±
3 ! W

±
h) soon takes over, once

it is kinematically allowed [28]. This relaxes the direct search bounds on m3 from the LHC. In fact, we have
explicitly checked that our parameter space of interest lies below the sensitivity region of ATLAS [64] in the tb̄

final state.

The pseudoscalar H0
3 may in principle be subjected to the bounds coming from the LHC searches for a CP-odd

neutral scalar decaying into Zh final state [66]. However, these searches target the production of the CP-odd
state either in ggF process or in association with b-quark pairs. Such production modes for H0

3 su↵er a O(sin�)
suppression in our scenario because of the doublet-triplet mixing, making the bound considerably weak. We
have checked that the signal yield for this process stays below the limit for all sin↵ and vt . 45 GeV.

In Fig. 6, we explain our results assuming the correlation between sin↵ and vt defined in Eq. (18) to identify the
decoupling limit of the model. Compared to Figs. 4 and 5, a significantly larger parameter space is now allowed
by the theoretical constraints of unitarity and BFB, especially in the low vt region. The current measurement
of � does not impose any additional constraints on the parameter space. Once again, one can observe that
stronger constraints from the direct collider searches in future will drive vt to lower values, thereby constantly
pushing us towards the decoupling limit.

4.3 Future prospects: HL-LHC Projected Limits

Here, we estimate the potential of the upcoming HL-LHC to probe the parameter space of the GM model to a
greater extent. In Fig. 7 we present our results assuming the correlation sin↵ = 2

p
3 vt/v for the m5 < m3 mass

hierarchy. The projected sensitivity of HL-LHC searches for the VBF production of a BSM scalar resonance
decaying to ZZ mode [67] is used to put constraints on the m5-vt parameter plane. The corresponding exclusion
is shown as a blue shaded region. We also show the exclusion from the unitarity and BFB constraints as a
gray shaded region. The projected exclusion limit from the HL-LHC measurements of Higgs signal strength is
shown as the orange shaded region, assuming the central values of the signal strengths to be consistent with
the corresponding SM expectations. Similar limits from the planned Higgs factory experiments [68] like the
Future Circular Collider (FCC-ee), the Circular Electron-Positron Collider (CEPC) and the International Linear
Collider (ILC) are also shown in the plot. For the direct searches, one can see almost an order of magnitude
improvement in the exclusion bounds compared to the current data, pushing the parameter space down towards
lower vt and hence towards the decoupling limit. On the other hand, even with the projected sensitivity of the
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✤ Benchmarks for un-correlated  range. Limits get stronger for 
larger . Exclusions from Higgs self-coupling  can be pronounced 
in the future. 

✤ The limits are stronger in the  limit. In the alternate case, 
additional decay modes reduced the effective BR. 

✤ The most stringent bound comes from charged Higgs to WZ channel. 
The vertical green patch is the Drell-Yan production of .
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Figure 6: Combined theoretical and LHC constraints on m5-vt parameter plane for sin↵ and vt correlated as
in Eq. (18). The plots correspond to two hierarchies, m5 < m3 (left) and m5 > m3 with (m5 �m3) = 100 GeV
(right). The excluded regions are shaded with colors detailed in the text. The Drell-Yan search channels lose
sensitivity beyond the green band where VBF constraints can still provide e↵ective constraints on the parameter
space.

HL-LHC to �, no additional constraints can be obtained on the allowed parameter space for correlated sin↵
and vt. The future Higgs factories can be much more e↵ective in this regard, restricting vt below 5 GeV. The
exclusion contours for the opposite mass hierarchy turn out to be very similar to the one presented here.

Figure 7: The expected sensitivity for the HL-LHC assuming the correlation sin↵ = 2
p
3 vt/v. The blue

shaded area represents the excluded regions from HL-LHC projected limit at
p
s = 13 TeV with integrated

luminosity of 3000 fb�1 considering the VBF production of H0
5 and its decay to ZZ [67]. The orange shaded

region corresponds to the expected exclusion reach from the HL-LHC measurements of the 125 GeV Higgs signal
strength. The corresponding limits from the FCC-ee, CEPC and ILC are also shown. The region excluded from
the unitarity and BFB constraints is shaded gray. The combined limits from HL-LHC and theoretical constraints
will restrict vt to lower values, driving it closer to the decoupling limit.
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✤ Combination of future Higgs 
precision data with direct VBF 
search can reduce the parameter 
space even further. 

✤ The null observation of 
nonstandard Higgs searches 
from VBF production is not 
‘null’. It provides important 
insights about the composition 
of EW vev. 



SUMMARY

VBF searches for new scalars can give complementary 
bounds on the non doublet contribution to the 

electroweak vev.
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feature of this model is that the members of the custodial fiveplet do not couple to the SM fermions at tree
level. Thus, the dominant direct bounds on the common mass of the custodial fiveplet can be obtained from
the LHC searches looking for nonstandard bosons in VBF production processes, making these searches tailor-
made for this model. In addition to collider data, we also consider the theoretical constraints from perturbative
unitarity and boundedness-from-below (BFB) conditions on the potential. A suitable reparametrization of the
trilinear couplings of the scalar potential is prescribed, making way for e�cient phenomenological analysis. We
show that the decoupling limit of the GM model can be expressed in terms of simple correlations among the
physical masses, mixing angles and the triplet VEV. We also take into consideration the bounds coming from
the measurement of the properties of 125 GeV Higgs boson, which we identify as the lightest CP-even custodial
singlet boson h present in the GM model. In our analysis, we demonstrate that the VBF searches can provide
complementary constraints to the theoretical bounds on the model parameter space. We also give estimates for
the potential of the future colliders such as the high luminosity- (HL-) LHC, Future Circular colliders (FCC)
etc. to constrain the remaining parameter space further. We explicitly show that the projected limits from the
HL-LHC VBF searches for new scalar resonances in combination with the theoretical constraints will practically
push the GM model towards the decoupling limit, imposing stringent constraints on the triplet contribution to
the electroweak VEV.

Analyses trying to constrain the GM model parameter space from the LHC Run-II data have been performed
earlier in the literature [22–37]. Our analysis supersedes them by including the full Run-II data set for the
diboson resonance searches, some of which were not available during the time of the previous analyses. Apart
from the direct collider searches, we employ the latest measurement of the trilinear Higgs self-coupling to provide
complementary constraints on the GM model parameter space. Another important feature of our analysis is
the simple parametrization of the input variables in terms of physical quantities resulting in a more direct
interpretation of the phenomenological results.

The plan of our paper is as follows. In Sec. 2, we briefly review the GM model. In Sec. 3, we discuss the
theoretical constraints on the model from perturbative unitarity and BFB requirements of the potential. Here
we also formulate correlations among the physical parameters corresponding to the decoupling limit of the
model. Constraints from the 125 GeV Higgs signal strength measurements are described in Sec. 4.1. In Sec. 4.2
we describe the impact of the direct search constraints from the LHC on the parameter space of the GM model.
The prospect for future colliders like the HL-LHC to further constrain this scenario is discussed in Sec. 4.3.
Finally, we summarize our findings in Sec. 5.

2 A brief recap of the GM Model

The GM model extends the scalar sector of the SM, consisting of the Y = 1 complex doublet � ⌘ (�+
�
0)|,

by adding two SU(2)L triplet scalar fields, one real ⇠ ⌘ (⇠+ ⇠
0

⇠
�)| and one complex � ⌘ (�++

�
+

�
0)|,

with hypercharges Y = 0 and Y = 2 respectively [14–16]. The scalar sector of this model is conventionally
expressed in terms of a bi-doublet � and a bi-triplet X, defined as,

� =

✓
�
0⇤

�
+

��
�

�
0

◆
, X =

0

@
�
0⇤

⇠
+

�
++

��
�

⇠
0

�
+

�
��

�⇠
�

�
0

1

A . (1)

The scalar potential for this model can be written as [27, 38]
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with ⌧a ⌘ �a/2, (a = 1, 2, 3) where �a’s are the Pauli matrices and ta’s are the generators of the triplet
representation of SU(2)L and are given by,

t1 =
1
p
2

0

@
0 1 0
1 0 1
0 1 0

1

A , t2 =
1
p
2

0

@
0 �i 0
i 0 �i

0 i 0

1

A , t3 =

0

@
1 0 0
0 0 0
0 0 �1

1

A . (3)

3

GEORGI-MACHACEK MODEL
The scalar potential is 

feature of this model is that the members of the custodial fiveplet do not couple to the SM fermions at tree
level. Thus, the dominant direct bounds on the common mass of the custodial fiveplet can be obtained from
the LHC searches looking for nonstandard bosons in VBF production processes, making these searches tailor-
made for this model. In addition to collider data, we also consider the theoretical constraints from perturbative
unitarity and boundedness-from-below (BFB) conditions on the potential. A suitable reparametrization of the
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The requirement of equal VEVs to the real and the complex triplets ensures that custodial symmetry in the
scalar potential remains intact. From the expressions of W and Z boson masses, the electroweak VEV can be
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Now, the bilinear terms in the scalar potential can be diagonalized to obtain the physical Higgs scalars of
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It can be observed from Eq. (8) that the members of the custodial fiveplet are composed entirely of SU(2)L
scalar triplets without any admixture from the doublets. Considering the fact that the SM fermions can couple
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S PARAMETER AND HIGGS SELF-COUPLING

Here we wish to clarify the distinction between the notions of ‘alignment’ and ‘decoupling’. ‘Alignment’ refers to
the limit when the lighter neutral Higgs boson (h) originates entirely from the SU(2)L doublet (i.e. sin↵ = 0)
making fermionic couplings of h to be SM-like4. Additionally, in this limit vt ⌧ vd so that the SU(2)L triplet
Higgses have negligible couplings of the form SV

µ

1 V2µ, making the trilinear hV
µ

1 V2µ couplings to be SM-like
as well. However, one of the crucial observations of our paper is that merely making the tree level couplings
of h to be SM-like does not guarantee the decoupling of heavy scalars, as has been emphasized through our
Eqs. (23) and (24). For proper decoupling, we should approach sin↵ ! 0 and sin� ! 0 in a correlated manner.
Such discussions of alignment vs decoupling are quite widespread for doublet extensions [44, 45]. In this work
we have performed a similar analysis for the triplet extensions which has remained somewhat less explored in
the literature so far.

We also wish to add that the discussion made in this section highlights an underemphasized fact that, in the
scenario of superheavy nonstandard scalars (much heavier than the EW scale) with only the SM-like scalar at the
EW scale, the perturbative unitarity constraints automatically push us towards the decoupling limit (in a spirit
similar to Ref. [46]). Such an aspect of perturbative unitarity has been discussed earlier for nHDMs [6, 44, 47]
and the HTM [41]. Here we explicitly demonstrate the connection between perturbative unitarity and the
decoupling limit for the GM model as well. We believe that this section will help to view the perturbative
unitarity constraints in a new light and serve as a motivation for the parametrization that we advocate.

For later use, we also give the expression of the coupling modifier for the trilinear Higgs self-coupling, which
reads

� ⌘
�hhh

(�hhh)SM
= cos3 ↵ sec� +

2
p
2

p
3
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2⇤2
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2
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p
2

p
3
sin↵ cot�

!

+

p
2

3
p
3

⇤2
2

m
2
h

sin3 ↵ csc� . (26)

One can easily check that � = 1 in the limit of Eq. (17). Moving away from the decoupling limit, however, the
deviation in �hhh can be significantly large depending on the parameter combinations. Preliminary measure-
ments of � can already put important constraints on the model parameter space, as will be discussed in more
detail in Sec. 4.2.

In passing, we recall that the oblique S-parameter [48] has been known to put important constraints on the
parameter space of the GM model [24, 49, 50]. The new physics contribution to the S-parameter in the GM
model is given by [50]5,
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, (27)

where e stands for the electric charge, sW (cW ) is the sine (cosine) of the weak mixing angle, MZ is the Z-boson
mass and gXY Z denotes the coupling among the X,Y and Z particles excluding the Lorentz factor. For explicit

4
Putting sin↵ = 0 in Eqs. (11b) and (11e), we obtain 4 (2�2 � �5) vt = M1. Note that, such a relation can also be inferred by

demanding the o↵-diagonal element of the 2 ⇥ 2 mass-matrix in the hd-H
00
5 basis [38] to be zero. However, if sin↵ = 0 limit is

approached in this way, it will lead to alignment without decoupling.
5
It should be noted that this expression of �S relies on the assumption that the new physics scale is much larger than MZ .

Although it is possible to define the oblique parameters without this assumption [51, 52], the corresponding expressions for the

GM model do not seem to be available in the literature. Keeping this in mind, the results that follow from Eq. (27) should be

interpreted with caution.
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THEORETICAL CONSTRAINTS: UNITARITY

Figure 1: Allowed regions from the combined constraints of unitarity and BFB in the limit vt ⌧ v. The
location of the narrow peak correspond to the decoupling limit defined by Eq. (17a).

y1 = 16�3 + 8�4 , (13c)

y2 = 4�3 + 8�4 , (13d)

y3 = 4�2 � �5 , (13e)

y4 = 4�2 + 2�5 , (13f)

y5 = 4�2 � 4�5 . (13g)

The theoretical constraints from perturbative unitarity requires that each of these eigenvalues must obey the
condition |x

±
i
|, |yi|  8⇡.

To illustrate the implications of the decoupling limit, we take the example of |y2|  8⇡ which, in terms of the
physical parameters, reduces to
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In the decoupling limit when vt ⌧ v, i.e., sin2 � ⌧ 1, the above relation will be extremely constraining and will
e↵ectively reduce to the following equality:
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The conditions |y1|  8⇡ and |y3�y5|  16⇡ will also have similar implications which we do not show explicitly2.

Another type of constraint will arise from conditions like |y3|  8⇡ which reduces to
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Similar constraints can be obtained from |y4|, |y5|  8⇡. A common feature of all these constraints is the
occurrence of the ratio (sin 2↵/ sin 2�) which blows up in the limit sin� ⌧ 1 and thus jeopardizes the unitarity
conditions for m

2
H

� v
2. Therefore, imposition of the unitarity conditions will entail a correlation between

sin↵ and sin� so that constraints like Eq. (16) can be satisfied even for vt ⌧ v. From the example conditions
of Eqs. (15) and (16), one may intuitively infer that the unitarity conditions will be trivially satisfied for
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2
The conditions |y3|, |y5|  8⇡ can be combined to obtain |y3 � y5|  16⇡ using the triangle inequality.
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Similar constraints can be obtained from |y4|, |y5|  8⇡. A common feature of all these constraints is the
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location of the narrow peak correspond to the decoupling limit defined by Eq. (17a).
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only to the doublet component, the members of the custodial fiveplet will not have any tree level coupling to
the SM fermions. Thus, the dominant production mode available for these particles at the LHC is via the VBF
process, making the VBF searches essential to probe the properties of such particles.

Before closing this section we note from Eq. (2) that there are nine parameters in the GM scalar potential with
two bilinears (µ2

�
and µ

2
X
), five quartic couplings (�i, i = 1, . . . , 5) and two trilinear couplings (M1 and M2).

Among these, the bilinears can be replaced by the VEVs, vd and vt using Eq. (7). The five quartic couplings
can also be exchanged for the four physical scalar masses, m5, m3, mH and mh and the mixing angle, ↵. Below,
we present the relation between the �i-s with the physical masses and mixings [27] :
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We wish to reiterate that in our analysis we consider h to be the lightest CP -even scalar corresponding to
the Higgs boson discovered at the LHC with mass mh ⇡ 125 GeV. In this study we will focus on the VBF
production of the nonstandard GM scalars at the LHC.

3 Theoretical constraints and the decoupling limit

To motivate the benchmark choices for our phenomenological analysis later, it is important to discuss the
implications of the theoretical constraints from tree-unitarity and BFB [38,40]. We will present our observations
in terms of the physical masses and mixings and focus on formulating a systematic method to approach the
SM-like limit a.k.a. the decoupling limit [38]. It is quite intuitive that the decoupling limit will be achieved
when vt ⌧ v and all the nonstandard scalars are much heavier than the electroweak scale. Since this has been
already discussed in Ref. [38], we will be brief and report only the important relations relevant to our present
study. The distinct upshot of our analysis is that the relations we obtain involve only the physical parameters
and therefore are quite straightforward to implement into the numerical codes, giving us a greater control over
the parameters required for the phenomenological studies.

To begin with, we suggestively reparametrize the trilinear coupling parameters M1 and M2 as follows:

⇤2
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p
2 sin�

⌘
M1v

2

4vt
, (12a)

⇤2
2 = 3

p
2 vM2 sin� ⌘ 12 vtM2 . (12b)

With these reparametrizations let us now investigate the unitarity conditions. Theoretical constraints from
perturbative unitarity put upper bounds on the eigenvalues of the 2 ! 2 scalar scattering amplitude matrix.
The eigenvalues can be expressed in terms of certain independent combinations of the scalar quartic couplings,
given as [38, 40],

x
±
1 = 12�1 + 14�3 + 22�4 ±

q
(12�1 � 14�3 � 22�4)

2 + 144�2
2 , (13a)

x
±
2 = 4�1 � 2�3 + 4�4 ±

q
(4�1 + 2�3 � 4�4)

2 + 4�2
5 , (13b)

5

Unitarity condition I

Unitarity condition II

In the decoupling limit, vt ≪ v

The unitarity conditions can be trivially satisfied in the `Decoupling limit’ 
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mode has half of the branching fraction to that of H0
5 ! ZZ. Thus, the bounds for H0

5 ! WW mode provides
no additional constraint on our parameter space.

Figure 4: Combined theoretical and experimental constraints on the m5-vt parameter plane for m5 < m3

hierarchy with sin↵ = 0.1 (left) and sin↵ = 0.3 (right). The excluded regions are shaded with various colors
explained in the text. The orange solid line corresponds to the correlation sin↵ = 2

p
3 vt/v. Beyond the green

band, the VBF searches dominate over Drell-Yan search channel and put nontrivial constraints on the parameter
space.

In Fig. 5 we show our allowed parameter region for mass hierarchy m5 > m3 for two benchmark values of sin↵.
In this case we present results for �m = m5 � m3 = 100 GeV, which plays a crucial role in determining the
branching ratios of the decaying particles. For m5 < m3 scenario considered earlier, the only possible decay
modes for H±

5 are those involving a pair of gauge bosons in the final state. However, here the decay modes of H±
5

become more diversified. Additional decays into H
±
5 ! H

0
3W

±, H±
5 ! H

±
3 Z final states are now kinematically

accessible, which decreases the signal strengths for H
±
5 ! W

±
Z mode, weakening the corresponding bounds.

Similarly, the presence of H0
5 ! H

0
3Z,H

±
3 W

⌥ modes results in the relaxation of the experimental constraint on
H

0
5 . Our choice of �m = 100 GeV serves as an illustrative benchmark to showcase the relaxation of the collider

constraints brought in by the opening up of the additional decay modes.

From Figs. 4 and 5, one may observe a slight variation of the cyan region with m5, as well as with the hierarchy
being considered. This may seem counterintuitive by looking at Eq. (26), which shows no apparent functional
dependence of � on m5. Such dependence of � on m5 is an indirect e↵ect generated by the perturbative
unitarity and BFB conditions which correlates the parameters ⇤1 and ⇤2 with values of m5 and m3.

In principle, the ATLAS data [18] should also translate as a lower limit on mH as a function of vt. Although
the H5ZZ and HZZ couplings are of similar magnitudes, the width-over-mass ratio for H tends to become
large (above 1%) in a significant region of parameter space, not respecting the narrow-width approximation.
On the other hand, the BR(H ! ZZ) gets suppressed in this case because of the presence of various other
decays including di-Higgs and fermionic modes which were not present for H0

5 . We have explicitly checked that,

the e↵ective cross section �(pp
VBF
���! H ! ZZ) lies well below the ATLAS sensitivity reach. The limits on H

from H ! hh searches can be e↵ective in constraining parameter spaces with sin� & 0.4 [29]8. In our scans,
this region lies inside the parameter space already excluded from other complementary constraints.

For the m3 < m5 hierarchy, the bounds on the charged Higgs boson H
±
3 must also be taken into account. Out of

the two pairs of charged Higgs bosons H±
3 and H

±
5 of the GM model, only the custodial triplet H±

3 can couple
to the SM fermions through its mixing with the doublet. Thus, H±

3 is likely to receive constraints from the
charged Higgs boson searches performed at the LHC. The ATLAS collaboration has published search results
for the production of charged Higgs bosons decaying to tb̄ final state [64]. The corresponding analysis by the
CMS collaboration, however, gives a much weaker bound [65]. In GM model the dominant production mode for

8
The custodial symmetry forbids couplings of the form H

0
5hh and H

0
3hh. Also, H

0
3 being a pseudoscalar provides an additional

reason not to give rise to the H
0
3hh coupling.
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Figure 5: Combined theoretical and experimental constraints on m5-vt parameter plane for m5 > m3 hierarchy
with �m = m5 �m3 = 100 GeV for sin↵ = 0.1 (left) and sin↵ = 0.3 (right). The excluded regions are shaded
with various colors explained in the text. The orange solid line corresponds to the correlation sin↵ = 2

p
3 vt/v.

The Drell-Yan search channels lose sensitivity beyond the green shaded region where VBF constraints can still
provide nontrivial constraints on the parameter space.

H
±
3 is in association with a tb̄ pair. There are two possible decay modes for H±

3 that dominates its total decay
width. BR(H±

3 ! tb̄) is dominant for smaller values of m3. However, BR(H±
3 ! W

±
h) soon takes over, once

it is kinematically allowed [28]. This relaxes the direct search bounds on m3 from the LHC. In fact, we have
explicitly checked that our parameter space of interest lies below the sensitivity region of ATLAS [64] in the tb̄

final state.

The pseudoscalar H0
3 may in principle be subjected to the bounds coming from the LHC searches for a CP-odd

neutral scalar decaying into Zh final state [66]. However, these searches target the production of the CP-odd
state either in ggF process or in association with b-quark pairs. Such production modes for H0

3 su↵er a O(sin�)
suppression in our scenario because of the doublet-triplet mixing, making the bound considerably weak. We
have checked that the signal yield for this process stays below the limit for all sin↵ and vt . 45 GeV.

In Fig. 6, we explain our results assuming the correlation between sin↵ and vt defined in Eq. (18) to identify the
decoupling limit of the model. Compared to Figs. 4 and 5, a significantly larger parameter space is now allowed
by the theoretical constraints of unitarity and BFB, especially in the low vt region. The current measurement
of � does not impose any additional constraints on the parameter space. Once again, one can observe that
stronger constraints from the direct collider searches in future will drive vt to lower values, thereby constantly
pushing us towards the decoupling limit.

4.3 Future prospects: HL-LHC Projected Limits

Here, we estimate the potential of the upcoming HL-LHC to probe the parameter space of the GM model to a
greater extent. In Fig. 7 we present our results assuming the correlation sin↵ = 2

p
3 vt/v for the m5 < m3 mass

hierarchy. The projected sensitivity of HL-LHC searches for the VBF production of a BSM scalar resonance
decaying to ZZ mode [67] is used to put constraints on the m5-vt parameter plane. The corresponding exclusion
is shown as a blue shaded region. We also show the exclusion from the unitarity and BFB constraints as a
gray shaded region. The projected exclusion limit from the HL-LHC measurements of Higgs signal strength is
shown as the orange shaded region, assuming the central values of the signal strengths to be consistent with
the corresponding SM expectations. Similar limits from the planned Higgs factory experiments [68] like the
Future Circular Collider (FCC-ee), the Circular Electron-Positron Collider (CEPC) and the International Linear
Collider (ILC) are also shown in the plot. For the direct searches, one can see almost an order of magnitude
improvement in the exclusion bounds compared to the current data, pushing the parameter space down towards
lower vt and hence towards the decoupling limit. On the other hand, even with the projected sensitivity of the
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Figure 6: Combined theoretical and LHC constraints on m5-vt parameter plane for sin↵ and vt correlated as
in Eq. (18). The plots correspond to two hierarchies, m5 < m3 (left) and m5 > m3 with (m5 �m3) = 100 GeV
(right). The excluded regions are shaded with colors detailed in the text. The Drell-Yan search channels lose
sensitivity beyond the green band where VBF constraints can still provide e↵ective constraints on the parameter
space.

HL-LHC to �, no additional constraints can be obtained on the allowed parameter space for correlated sin↵
and vt. The future Higgs factories can be much more e↵ective in this regard, restricting vt below 5 GeV. The
exclusion contours for the opposite mass hierarchy turn out to be very similar to the one presented here.

Figure 7: The expected sensitivity for the HL-LHC assuming the correlation sin↵ = 2
p
3 vt/v. The blue

shaded area represents the excluded regions from HL-LHC projected limit at
p
s = 13 TeV with integrated

luminosity of 3000 fb�1 considering the VBF production of H0
5 and its decay to ZZ [67]. The orange shaded

region corresponds to the expected exclusion reach from the HL-LHC measurements of the 125 GeV Higgs signal
strength. The corresponding limits from the FCC-ee, CEPC and ILC are also shown. The region excluded from
the unitarity and BFB constraints is shaded gray. The combined limits from HL-LHC and theoretical constraints
will restrict vt to lower values, driving it closer to the decoupling limit.
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