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The Standard Model 


Is an extremely successful Theory that describes 

interactions between the known elementary particles. 

3 generations

of fermions (mattter) 

Gauge and Higgs 

Fields
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H couplings with more general assumptions
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Measurement assuming effective 
couplings for ggH, Hɣɣ, and HZɣ  

Assuming also H decays to 
invisible(≔missing pT) & undetectable 
(≔non-closure of other BR’s to unity) 

Stat. unc ≅ syst unc except for 
kμ and and kZɣ

Both invisible and undetectable 
BR’s compatible with zero

Generic coupling

How: Similar to previous setup with this time 
allowing for non-SM particles in loop processes, 
with effective coupling strengths. 

Two scenarios: with and without invisible and 
undetected non-SM Higgs decays. 

Highlights:

● SM compatibility (p-value): 61% (Binv = Bu = 0)
● Upper limits on Binv of 0.13 (0.08) and Bu of 

0.12 (0.21) at 95% CL 
○ To include Binv  and Bu one has to add some extra 

constraint (κV≤1 )
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ATLAS and CMS Fit to Higgs Couplings

Departure from SM predictions of the order of


few tens of percent allowed at this point.



H couplings to fermions and vector bosons
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● Coupling modifiers k to quantify couplings 
deviations from SM predictions 

H couplings vs particle mass

○ Compatibility with SM within 10%

○ ~5✕ improvement wrt discovery

Likelihood scan of (kf, kV)

k μ =
 k

τ =
 k

b =
 k

t =
  

kZ = kW =  

○ Agreement with SM for 
masses within 0.1 - 200 GeV

Coupling to each particle
How: 

● All modifiers assumed to be positive
● Only SM particles in loop processes
● No invisible or undetected non-SM Higgs 

decays 
● Two setups: with and without κc to cope with 

low sensitivity 

Highlights:

SM compatibility (p-value): 
56% (κc=κt ) and 65% (κc free-floating)

Coupling precision: 

● Fermions (t, b, τ ): 7% -12% 
● Vector bosons (W, Z): 5%
● Upper limit on κc of 5.7 (7.6) x SM at 95% CL 

11Nature 607, 52–59 (2022)Paolo Francavilla - Higgs Hunting 2022

Correlation between masses and couplings consistent

with the Standard Model expectations
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Third generation coupling that are constrained at the 10 percent level,

will be constrained at the few percent level (including the muon) at the end of the LHC era



Why we should not be surprised

• There is a well known, amazing property of the SM as an effective field theory 


• Take any sector with gauge invariant mass terms, which do not involve the Higgs v.e.v.


• The Appelquist-Carrazonne decoupling theorem says that as we push these gauge invariant 
masses up, the low energy effective theory will reduce to the Standard Model !


• The speed of decoupling depends on how these sector couple to the SM. In general, for a 
coupling κ, decoupling occurs when 


• Obviously decoupling doesn’t occur if the masses are proportional to the v.e.v.   


• These properties are behind the EFT program. 
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Simple Framework for analysis of coupling deviations

2HDM : General Potential

• General, renormalizable potential has seven quartic couplings, with three of them, 
given in the last line, which may be complex. 


• In general, it is assumed that lambda 6 and 7 are zero, since this condition appears 
naturally in models with flavor conservation.  However, this condition is basis 
dependent and it is not necessary. 


• We will therefore concentrate on the general 2HDM, with all quartic couplings 
different from zero.  As it is well known, an important parameter in these models is

the requirement of perturbative unitarity. Section 5 presents the bounds coming from
the requirement that the tree level potential be bounded from below. In Section 6,
we discuss the vacuum stability. Finally, we reserve Section 7 for a brief analysis of
the phenomenological constraints and Section 8 for our conclusions. For the impatient
reader, a table listing the relevant results may be found at the end of the Conclusions

2. The general 2HDM

As emphasized above, we focus on the scalar sector of the theory. In general, gauge
invariance implies that the potential can only include bilinear and quartic terms. Each
of the three bilinear terms has a corresponding mass parameter, of which two (m2

11 and
m2

22) are real while the third, associated with a bilinear mixing of both Higgs doublets
(m2

12) may be complex.
Regarding the quartic couplings in the scalar potential, the two associated with self

interactions of each of the Higgs fields, �1 and �2, must be real and, due to vacuum
stability, positive. There are two couplings associated with Hermitian combinations of
the Higgs fields, �3 and �4, which must be real, though not necessarily positive. The
coupling �5 is associated with the square of the gauge invariant bilinear of both Higgs
fields, and it may therefore be complex. The couplings �6 and �7 are associated with
the product of Hermitian bilinears of each of the Higgs fields with the gauge invariant
bilinear of the two Higgs fields, and, as with �5, they may be complex. The most general
scalar potential for a complex 2HDM is therefore:
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(1)

with �1,2 = (�+
1,2, �

0
1,2)

T complex SU(2) doublets with hypercharge +1.
One way to prevent Higgs-induced flavor violation in the fermion sector is to introduce

a Z2 parity symmetry under which each charged fermion species transforms as even or
odd. The Higgs doublets are assigned opposite parities and couple only to those charged
fermions that carry their own parity. In such a scenario, the terms accompanying the
couplings �6 and �7 would violate parity symmetry and hence should vanish. The mass
parameter m2

12 is also odd under the parity symmetry but induces only a soft breaking of
this symmetry, which does not affect the ultraviolet properties of the theory, and hence
may remain non-zero.

There are alternative ways of suppressing flavor violating couplings of the Higgs to
fermions which do not rely on a simple parity symmetry and hence allow for the presence
of �6 and �7 terms. One example would be to assume a discrete Z3 symmetry under
which �1 transforms with charge 1 and �2 transforms with charge -2. The bilinear �†

1�2

is invariant under this Z3, and so the �6 and �7 terms are then allowed. The right
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Higgs Basis

• An interesting basis for the phenomenological analyses of these models is the 
Higgs basis


• The field          is therefore associated with the field direction that acquires a 
vacuum expectation value and acts as a SM-like Higgs


• The behavior of the neutral mass eigenstates depend on the projection on 
the fields in this basis.  


• Typically, it is the lightest neutral Higgs boson that behaves like the SM-like 
Higgs.  The case in which one can identify the state       with the mass 
eigenstate is called alignment.


• In the alignment limit the tree-level couplings agree with the SM ones. Large 
departures from the alignment limit are heavily restricted by LHC 
measurements. 

A. Higgs basis conversion

The phenomenological properties of the Higgs sector are more easily analyzed in the
Higgs basis, in which only one of the doublets possesses a vev8. We parameterize the
doublets as:

H1 =

✓
G+

1p
2
(v + �0

1 + iG0)

◆
, H2 =

✓
H+

1p
2
(�0

2 + ia0)

◆
, (82)

where G± and G0 are the Goldstones that become the longitudinal components of W±

and Z, H± is the physical singly charged scalar state, and (�0
1, �

0
2, a

0) are the neutral
scalars. The potential in the Higgs basis reads:
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(83)

The conversion between the potential parameters in the general basis and those in the
Higgs basis have been worked out in Ref. [36]; so as to be self-contained, we reproduce
them here. They are obtained by a rotation by an angle � in field space of the original
two Higgs doublets. The mass terms in the two bases are related as:

m2
11 = M2

11c
2
�

+ M2
22s

2
�

+ Re[M2
12e

i�]s2� , (84a)
m2

22 = M2
11s

2
�

+ M2
22c

2
�

� Re[M2
12e

i�]s2� , (84b)

m2
12e

i� =
1

2
(M2

22 � M2
11)s2� + Re[M2

12e
i�]c2� + i Im[M2

12e
i�] , (84c)

where tan � = v2/v1 with range 0  � 
⇡

2 , and � is the phase accompanying v2 in the
general basis parameterization of the doublets in Eq. (56). The relations between the

8This is technically not enough to uniquely define the Higgs basis. The U(1) diagonal subgroup
of the SU(2) symmetry in Higgs flavor space remains intact following SSB. This corresponds to
transformations �1 ! e

i��1, �2 ! e
�i��2. As a result, we have a one-dimensional family of Higgs

bases parameterized by �: {e
�i�

H1, e
i�

H2}.
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H1 = �1 cos� + �2 sin�

H2 = �1 sin� � �2 cos�
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Quartic Couplings in the Higgs basis
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Similar notation as in the generic basis, but changing lambdas by Z’s

Observe that since only H1 acquires vacuum expectation value in this basis, the
mixing between the Higgs states of both doublets can only occur via Z6



Mass Matrix in the Higgs Basis

• The neutral Higgs mass matrix takes a particularly simple form in the Higgs 
basis (Zi are the quartic couplings in this basis)


• Two things are obvious from here.  First, in the CP-conserving case, the 
condition of alignment,                implying small mixing between the lightest 
and heavier eigenstates is given by


• Second, while in the alignment limit the real part of        contributes to the 
splitting of the two heavier mass eigenstates, its imaginary part contributes to 
the splitting and their mixing. 

6.3. Vacuum stability in the Higgs basis

It is particularly interesting to study vacuum stability in the Higgs basis, in which only
one of the doublets possesses a vev (see Appendix A for a review of the conversion to the
Higgs basis as well as our conventions). One advantage of this basis is that the potential
parameters are closely related to physical observables.7 For example, Z1 controls the
trilinear coupling of three SM-like Higgs bosons hhh, Z6 controls the trilinear coupling of
two SM-like and one non-SM-like CP-even Higgs bosons hhH, etc. (see e.g. Ref. [31] for
an exhaustive list of couplings). Since none of the bounds obtained in this article have
relied on the choice of basis, they can equally well be applied to Higgs basis parameters.
Using the close relationship between the Higgs basis parameters and physical quantities,
we here aim at obtaining approximate bounds on the physical observables of the model.

First, we will restrict ourselves to the alignment limit — the limit in which the scalar
associated with the vev behaves as the observed SM-like Higgs boson: i.e., it is aligned
with the 125 GeV mass eigenstate and couples to the electroweak gauge bosons with SM
strength. In our parameterization, given in Eq. (82), this is �0

1. The mass matrix for the
neutral scalars ~� = (�0

1, �
0
2, a0)T reads:

M
2 = v2

0

B@
Z1 ZR

6 �ZI

6

ZR

6

M
2
H±
v2

+ 1
2(Z4 + ZR

5 ) �
1
2Z

I

5

�ZI

6 �
1
2Z

I

5

M
2
H±
v2

+ 1
2(Z4 � ZR

5 )

1

CA , (67)

with M2
H± the charged Higgs mass:

M2
H± = M2

22 +
1

2
Z3v

2 . (68)

Looking at the above matrix, it appears that there are two ways in which we can achieve
alignment. One option — the decoupling limit — corresponds to taking M2

H± + 1
2(Z4 ±

ZR

5 )v2
� Z1v2. Then the heavy mass eigenstates h2 and h3 can simply be integrated

out alongside the heavy charged Higgs H±, leaving just one light mass eigenstate h1

which is aligned with �0
1. More interesting from a phenomenological standpoint is the

alignment without decoupling limit, since it leaves the BSM states potentially within
collider reach. This corresponds to taking |Z6| ⌧ 1, for which mixing between �0

1 and
the other neutral scalars vanishes, leading us to identify it with the mass eigenstate h1.
We will take h1 ⌘ h to be the SM-like Higgs boson, with mass:

M2
h

= Z1v
2 . (69)

To obtain a physical Higgs mass close to the experimental value of 125 GeV, it is required
that we fix Z1 ⇡ 0.25. The remaining 2⇥2 mass matrix can be diagonalized to obtain
the masses of the remaining scalars h2 and h3:

M2
h3,h2

= M2
H± +

1

2
(Z4 ± |Z5|)v

2 . (70)

7The number of physical parameters in the most general 2HDM is 14. Another advantage of the Higgs
basis is that this is reduced to 11, since the complex M

2
12 is determined by Z1, Z6, and M

2
11, and

the freedom to rephase H2 implies that only the relative phase between Z5, Z6, and Z7 is physical.

25

<latexit sha1_base64="pX5rbfmqfxtag2hv5Bj+srgksgQ=">AAAB6nicbVDJSgNBEO2JW4xb1KOXxiB4GmYzmdyCXjxGNAsmQ+jp9CRNeha6e4QQ8glePCji1S/y5t/YMxlwwQcFj/eqqKrnJ4wKaRifWmltfWNzq7xd2dnd2z+oHh51RZxyTDo4ZjHv+0gQRiPSkVQy0k84QaHPSM+fXWV+74FwQePoTs4T4oVoEtGAYiSVdHs/uhhVa4Zet6xGswEN3ciRkabtug40C6UGCrRH1Y/hOMZpSCKJGRJiYBqJ9BaIS4oZWVaGqSAJwjM0IQNFIxQS4S3yU5fwTCljGMRcVSRhrv6cWKBQiHnoq84Qyan462Xif94glYHrLWiUpJJEeLUoSBmUMcz+hmPKCZZsrgjCnKpbIZ4ijrBU6VTyEFxHpWDDnDi2sSKW/R1C19LNum7dOLXWZRFHGZyAU3AOTNAALXAN2qADMJiAR/AMXjSmPWmv2tuqtaQVM8fgF7T3L2E1jhE=</latexit>

Z5

6.3. Vacuum stability in the Higgs basis

It is particularly interesting to study vacuum stability in the Higgs basis, in which only
one of the doublets possesses a vev (see Appendix A for a review of the conversion to the
Higgs basis as well as our conventions). One advantage of this basis is that the potential
parameters are closely related to physical observables.7 For example, Z1 controls the
trilinear coupling of three SM-like Higgs bosons hhh, Z6 controls the trilinear coupling of
two SM-like and one non-SM-like CP-even Higgs bosons hhH, etc. (see e.g. Ref. [31] for
an exhaustive list of couplings). Since none of the bounds obtained in this article have
relied on the choice of basis, they can equally well be applied to Higgs basis parameters.
Using the close relationship between the Higgs basis parameters and physical quantities,
we here aim at obtaining approximate bounds on the physical observables of the model.

First, we will restrict ourselves to the alignment limit — the limit in which the scalar
associated with the vev behaves as the observed SM-like Higgs boson: i.e., it is aligned
with the 125 GeV mass eigenstate and couples to the electroweak gauge bosons with SM
strength. In our parameterization, given in Eq. (82), this is �0

1. The mass matrix for the
neutral scalars ~� = (�0

1, �
0
2, a0)T reads:

M
2 = v2

0

B@
Z1 ZR

6 �ZI

6

ZR

6

M
2
H±
v2

+ 1
2(Z4 + ZR

5 ) �
1
2Z

I

5

�ZI

6 �
1
2Z

I

5

M
2
H±
v2

+ 1
2(Z4 � ZR

5 )

1

CA , (67)

with M2
H± the charged Higgs mass:

M2
H± = M2

22 +
1

2
Z3v

2 . (68)

Looking at the above matrix, it appears that there are two ways in which we can achieve
alignment. One option — the decoupling limit — corresponds to taking M2

H± + 1
2(Z4 ±

ZR

5 )v2
� Z1v2. Then the heavy mass eigenstates h2 and h3 can simply be integrated

out alongside the heavy charged Higgs H±, leaving just one light mass eigenstate h1

which is aligned with �0
1. More interesting from a phenomenological standpoint is the

alignment without decoupling limit, since it leaves the BSM states potentially within
collider reach. This corresponds to taking |Z6| ⌧ 1, for which mixing between �0

1 and
the other neutral scalars vanishes, leading us to identify it with the mass eigenstate h1.
We will take h1 ⌘ h to be the SM-like Higgs boson, with mass:

M2
h

= Z1v
2 . (69)

To obtain a physical Higgs mass close to the experimental value of 125 GeV, it is required
that we fix Z1 ⇡ 0.25. The remaining 2⇥2 mass matrix can be diagonalized to obtain
the masses of the remaining scalars h2 and h3:

M2
h3,h2

= M2
H± +

1

2
(Z4 ± |Z5|)v

2 . (70)

7The number of physical parameters in the most general 2HDM is 14. Another advantage of the Higgs
basis is that this is reduced to 11, since the complex M

2
12 is determined by Z1, Z6, and M

2
11, and

the freedom to rephase H2 implies that only the relative phase between Z5, Z6, and Z7 is physical.

25

<latexit sha1_base64="LfkdZk4HangQP3EPrBKr08mrO/E="></latexit>

cos(� � ↵) = � Z6v2

m2
H
�m2

h

<latexit sha1_base64="H7bFUsuWUmn9SNsiOWJkPKkPk6Y="></latexit>

m2
h = Z1v

2, mh = 125 GeV
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Decoupling : Z6v
2 ⌧ m2

H
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• The interactions with fermions present an amazing story.  We start with a 
completely arbitrary 3x3 Yukawa matrix interactions, where this three is 
related to generations


• Now, when you give the Higgs a v.e.v. this becomes a mass matrix that you 
must diagonalize when going to the physical states.


• But, due to the fact that mass and Yukawa matrices are proportional to each 
other, the interactions become flavor diagonal


• In general, there are no tree-level Flavor Changing Neutral Currents ! No 
tree-level CP violation.  All these effects occur at the loop-level, via the 
charged weak interactions, and are proportional to CKM matrix elements. 


• I don’t need to tell you how amazing this is ! Moreover, all available data is 
consistent with these predictions. 

Amazing Properties of the SM Higgs sector
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Mimicking the SM behavior

• In 2HDM, one can mimic the SM behavior by just allowing the fermions with 
a giving charge (up quarks, down quarks, charge leptons and neutrinos) to 
couple to only one of the Higgs fields.


• This leads to the so-called type I to IV 2HDM, depending on which couplings 
are allowed. 


• In type I, all fermions couple to the same Higgs. In type II, down quarks and 
charge leptons couple to one of the Higgs boson doublets and up quarks and 
neutrinos to the other.  This is the scheme allowed at tree-level in SUSY 
theories. 


• Let me emphasize that at the loop level in SUSY theories couplings to the 
other Higgs boson doublet appear. 



Modifying the top and bottom couplings in two Higgs Doublet Models
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(Neutral Higgs bosons in the Higgs basis)

Couplings in low energy supersymmetry (tree level) : Type II 2HDM

Alignment :
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We will keep in mind that the LHC  favors and SM-like Higgs boson
LHC constraints on Higgs alignment in the 2HDM

Regions excluded by fits to the measured rates of the productions and decay of the Higgs

boson (assumed to be h of the 2HDM). Contours at 95% CL. The observed best-fit values

for cos(β −α) are −0.006 for the Type-I 2HDM and 0.002 for the Type-II 2HDM. Taken

from ATLAS Collaboration, ATLAS-CONF-2021-053 (2 November 2021).

LHC constraints on Higgs alignment in the 2HDM 

Regions excluded by fits to the measured rates of the productions and decay of the Higgs boson 
(assumed to be h of the 2HDM). Contours at 95% CL. ATLAS-CONF-2021-053 



Radiative Corrections to Flavor Conserving Higgs Couplings

• Couplings of down and up quark fermions to both Higgs fields arise 
after radiative corrections. 

 

• The radiatively induced coupling depends on ratios                                   
of  supersymmetry breaking parameters
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Figure 1: SUSY radiative corrections to the self-energies of the d-quarks

We show that the usual approach of calculating tanβ enhanced FCNC (Flavor Changing
Neutral Currents) effects in the Kaon sector does not agree with the exact results one finds
in the limit of flavor independent masses. Thus, we develop a perturbative approach that
leads to agreement with the exact result in this limit. Finally we study the effects of the
phases of M1, M2, M3 and µ on ∆Ms, BR(Bs → µ+µ−) and εK in the cases of uniform and
split squark spectra.

We shall emphasize the implications of the present bounds on BR(Bs → µ+µ−) for future
measurements at the Tevatron collider, both in Higgs as well as in B-physics. In particular,
we shall show that the present bound on BR(Bs → µ+µ−) leads to strong constraints
on possible corrections to both ∆Ms and the Kaon mixing parameters in minimal flavor
violating schemes. Moreover, we shall show that this bound, together with the constraint
implied by the measurement of BR(b → sγ) leads to limits on the possibility of measuring
light, non-standard Higgs bosons in the MSSM.

This article is organized as follows. In section 2, we define our theoretical setup, giving
the basic expressions necessary for the analysis of the flavor violating effects at large values
of tan β. In particular, we show how the first order perturbative expressions in the CKM
matrix elements are inappropriate to define the corrections in the Kaon sector where higher
order effects need to be considered. In section 3 we show the implications of the constraint
on BR(Bs → µ+µ−) for the mixing parameters of the Kaon and B sectors in the large tanβ
regime. In section 4, we explain the implications for Higgs searches at the Tevatron. We
reserve section 5 for our conclusions and some technical details for the appendices.

2 Theoretical Setup

2.1 The resummed effective Lagrangian and the sparticle spec-
trum

The importance of large tan β FCNC effects in supersymmetry has been known for sometime.
The finite pieces of the one-loop self energy diagrams lead to an effective lagrangian for the

2

tan� =
v2

v1

Xt = At � µ/ tan� ⇥ At �b = (Eg + Eth
2
t ) tan �
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SUSY at Loop Level



Generic case

• Although it is important to consider models that mimic the SM suppression 
of flavor violation, one should also analyze a more generic case, since it is 
what quite generally appears at low energies. 


• So, let’s write the coupling modifications in 2HDM for the case in which 
each type of fermions couple to both Higgs


• The fermion mass matrix will then be given by 


• We shall denote with a bar the Yukawas in the physical basis where the mass 
is diagonal. Hence


• Therefore, for 
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�i

tan �
(20)

where

�i =
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Re(ȳii2 )
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There several advantages of working on this basis. First of all, only one of the Higgs doublets,

H1 acquires a vacuum expectation value. Second, the charged Higgs boson components are

clearly identified, with the charged Goldstone belonging to the H1 field and the physical

charged Higgs boson being in H2. Third, fermion masses will come from the coupling to H1,

implying that once we diagonalize the mass matrix, the coupling to the neutral component

of H1 will be diagonalized as in the SM, what allows for a clear definition of the flavor

couplings, as we will see below.

The fields H1 and H2 have therefore components
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where H
0
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is diagonal, while h̄2 is an arbitrary complex matrix in this basis.
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There several advantages of working on this basis. First of all, only one of the Higgs doublets,
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Higgs FCNC demands flavor as well as Higgs misalignment !

Arbitrary Yukawas :

<latexit sha1_base64="0kozmgd4DB8Qt9zdpKaFbGWOPkU="></latexit>

ȳ1v1 + ȳ2v2 = Diag(m) ! ȳ1 cos� + ȳ2 sin� = Diag(m/v)

<latexit sha1_base64="webVAHvrEB44PsaDbDvLSvbeBCo="></latexit>

L � �(yij↵ F̄L�↵fR + h.c.)
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Mass term coming mainly from coupling to �1
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Mass term coming mainly from coupling to �2



Possible flavor violation in Higgs decays

No hint from CMS, though :
<latexit sha1_base64="55h8F5H8J7jhObSK1p0Wu6TfHB0="></latexit>

BR(H ! ⌧µ, e) < 0.15%







Couplings in the Higgs basis

• Let me emphasize that the Higgs basis is a convenient mathematical 
construction, and that the couplings  can be derived by taking the 
limit of tanβ = 0 of the above expressions.


• It is simple to show that in this case the deviation of diagonal 
couplings as well as the flavor violating couplings are governed by 
the diagonal and off diagonal components of the Higgs that does not 
acquire vev (the Yukawa matrix to the Higgs that acquire vev is 
obviously diagonal in this case)  ( see Howie Haber’s talk )


• Although  in principle the Yukawa couplings to the second Higgs 
look arbitrary and not related to fermion masses, they must have a 
structure in the construction of the mass matrix in the original basis 
where both Higgs bosons acquire a vev. ( otherwise the off-diagonal 
elements will look dangerously large in the non-decoupling limit).



IV. COUPLINGS OF h02

One can work out similar expressions for the couplings of the non-standard CP-even

Higgs boson h
0
2. In the Higgs basis, one gets
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R
+ h.c. (27)

As before, it is useful to write this expression in terms of the original couplings y1 and y2,

Eq. (1). Using Eq. (16), one obtains
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The main di↵erence with respect to h
0
1 is that the couplings, including the flavor and CP

violating ones, are enhanced at large values of tan � close to the alignment limit cos(��↵) '

0. As before, one can write the CP-even flavor conserving diagonal terms in a more concise

way, by using the �i expression, Eq. (21). One gets
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The above expression can also be written in terms of �̃i, in a similar way as we did for the

case of h0
1. In this case,
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One gets the usual result that in the alignment limit the couplings of h0
2 are enhanced by

tan � factors for the case that the fermion only couples to �1 and it is suppressed by tan �

factors when it only couples to �2. Let us stress again that the lass factors in Eq. (29) and

(30) depend only on the ratios of couplings and are not linearly enhanced or suppressed for

large values of tan �.

Eq. (28), together with Eq (18), and the diagonal couplings, Eq. (29), or equivalently

Eq. (30), lead to the most general expression for the coupling of the neutral Higgs h0
2 in the

case of negligible CP-violation contributions to the neutral Higgs mass matrix, namely
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Re(ȳij2 )
p
2 cos �

(1� �
ij) sin(� � ↵) + i
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V. COUPLINGS OF A0

In the Higgs basis, the CP-odd Higgs A
0 as well as the charged Higgs, belong to the

doublet H2. Therefore, its coupling is given by
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One can now use Eq. (16) to write this expression in terms of mi and the original couplings

y2. We obtain
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We can concentrate now on the diagonal couplings, as we did with h
0
1 and h

0
2. Using Eq. (20)

we get the CP-odd diagonal couplings of A0, which are given by

LDiagA = i
mi

v(1 +�i

✓
tan � �

�i

tan �

◆
A

0
f̄i�5fi (35)

As before, one can write an equivalent expression in terms of �̃i that is more appropriate

for the case that the couplings given by the ȳ1 components are small compared to the ȳ2

ones, namely
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The full interaction Lagrangian for A may now be written as
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or, equivalently
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Non-SM Higgs Coupling

Higgs alignment, of course, does not ensure flavor alignment in 

the non-standard Higgs sector

<latexit sha1_base64="WdsyzBM5YaSgKHvx8IzDyiUrKbo="></latexit>

L � �(yij↵ Q̄LH↵fR + h.c.)
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H1-coupling
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H2-coupling
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Complementarity of Direct and Indirect Bounds

Bahl, Fuchs, Hahn, Heinemeyer, Liebler, Patel, Slavich, Stefaniak, Weiglein, C.W. arXiv:1808.07542

Dashed area, constrained by precision measurements.

Low values of the Higgsino Mass assumed in this Figure.

Interesting but not compelling excess appears at CMS. 

No similar excess appears at ATLAS. 
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Figure 1: Constraints on the M
125
h

scenario from Higgs searches at the LHC, in the (MA , tan �)
plane. The green solid lines are predictions for the mass of the lighter CP-even scalar h, the
hatched area is excluded by a mismatch between the properties of h and those of the observed
Higgs boson, and the blue area is excluded by the searches for additional Higgs bosons (the
darker-blue band shows the theoretical uncertainty of the exclusion).

and it opens up to higher values of tan � for increasing MA. The constraints at high values
of tan � arise essentially from the searches for H/A ! ⌧

+
⌧
� at the LHC with 13 TeV center-

of-mass energy [137, 138]. On the other hand, values of tan � lower than about 6 are ruled
out in the M

125
h

scenario by the prediction of a mass below 122.09 GeV for the SM-like scalar.
The hole in the blue area around MA ⇡ 250 GeV and tan � ⇡ 4 corresponds to a region of
the parameter space where H has significant branching fractions to ZZ and hh pairs, but no
individual search is strong enough to yield an exclusion. However, this region is ruled out by
the requirement that the properties of h match those of the observed Higgs boson.

3.5 Scenarios with light superparticles

Light superparticles, in particular charginos and neutralinos – which we collectively denote as
electroweak (EW)-inos – and third-generation sfermions, can substantially influence the Higgs
phenomenology, see e.g. Refs. [15, 182–187]. This may happen through loop contributions to
the Higgs boson couplings to SM particles, as well as, when kinematically possible, through
direct decays of the Higgs bosons into superparticles.
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Higgs Flavor violation

Induces flavor violating processes which do not involve the Higgs directly


One example is the  radiative decay  of heavy leptons into lighter ones


Here I assume that the top and leptons have dominant couplings like in type II scenarios

<latexit sha1_base64="EP3myuaub++vzsNo2fl8V9qc7Cw="></latexit>

BR(µ ! e�) < 4.2⇥ 10�13



μ to e Conversion

Less relevant  interference
Harnik, Kopp, Zupan, arXiv:1209.1937



Flavor Conserving and Violating Processes

• There can be interesting cancellations between the flavor violating contributions of light 
and heavy Higgs bosons.


• The large hierarchy between the different generations can be explained in different ways.


• Generically, if we assume the dominant Yukawa to lead to the generation of the tau mass 
and the other to lead to the generation of the muon and electron masses, the off-diagonal 
elements are proportional to, for instance,
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Case in which
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BR(h ! ⌧µ) < 0.002

Visible interference between light and heavy Higgs contributions



Case in which
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Case in which
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Influence of Diagonal Couplings
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For Diagonal values ȳii2 = 0 (impact of �i = 0).
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Alignment Condition

Possible alignment solutions : 


1. At large tanβ, and if λ7 is small, generated at the loop level,                                                                                   
as in the MSSM,


2. For small tanβ, the term in square brackets must be cancelled. This could happen if

 


This can be due to a symmetry relation, that we will explore.


3. Alternative, for sizable tanβ, and very small λ7, there could be an accidental cancellation. 


For instance, at large values of tanβ, this can happen whenever


This mechanism is at work in the NMSSM, where 
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A well motivated example : Supersymmetry

Unification
SUSY Algebra

Quantum Gravity ?

Electroweak Symmetry Breaking

{Q↵, Q̄↵̇} = 2�µ
↵↵̇Pµ

[Q↵, Pµ] = [Q̄↵̇, Pµ] = 0

If R-Parity is Conserved the Lightest SUSY

particle is a good Dark Matter candidate

Ultraviolet Insensitivity



Lightest SM-like Higgs mass strongly depends on:

* CP-odd Higgs mass mA                          * tan beta                           *the top quark mass
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* the stop masses and mixing

Mh depends logarithmically on the averaged stop mass scale MSUSY  and has a quadratic and 

quartic dep. on the stop mixing parameter  Xt. [and on sbottom/stau sectors for large tan beta]


For moderate to large values of tan beta and large non-standard Higgs masses 
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Xt = At − µ /tanβ →LR stop mixing

Analytic expression valid for  MSUSY~ mQ ~ mU

Carena, Espinosa, Quiros, C.W.’95,96

MSSM Guidance ?

=
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Stop Searches :



MSSM Guidance:

Stop Masses above about 1 TeV lead to the right Higgs Masss


FIG. 7. As in Fig. 6, with mA = MS , t� = 20, Ab = A⌧ = MS , and µ = M1 = M2 = MS .

quartic couplings are resummed in order to increase the accuracy of the results at large

values of MS [54, 55].

In Fig. 8, we present the comparison of our results with the hMSSM approximation for

sizable values of µ̂ = 2 and values of bXt = �1.5 and bXt = 2.8, away from maximal mixing,

for which the hMSSM results are expected to show a worse approximation to the correct

results than for low values of µ at moderate or large values of t�. The results of our compu-

tation for the mixing angle ↵ and the heavy CP -even Higgs mass are presented in the left

and right panels with red dotted lines, while the blue lines represent the relative and abso-

lute di↵erences of these quantities with the ones computed in the hMSSM approximation.

We present our results for MS = 5 TeV, for which the correct values of the Higgs mass,

represented by black solid, dashed and dotted lines, may only be obtained for moderate to

large values of t� in this region of parameters. Di↵erences in ↵ of the order of 10%–20%

are obtained for moderate values of t� and values of the heavy CP -even Higgs bosons of

the order of the weak scale. Since the mixing angle controls the coupling of the lightest

CP -even Higgs boson to fermions and gauge bosons, relevant modifications of the Higgs

phenomenology are expected in this region of parameters. Similarly, the heavy CP -even

Higgs boson mass may be a↵ected by values of a few to 10 GeV in this region of parameters.

In Fig. 9, we present in the upper panels similar results but for bXt = 2.8 and large values

of MS = 100 TeV for which lower values of t� ' 4 are required to obtain the correct Higgs

masses. We see that in this case, in the relevant region of parameters, the agreement is

improved compared to the large t� case, with di↵erences in ↵ of the order of a few percent

23

FIG. 6. Mh vs bXt for mA = (200, 500) GeV in the (left, right) columns, t� = (2, 20) in the (top,

bottom) rows, Ab = A⌧ = MS , and µ = M1 = M2 = 200 GeV. The four curves are for MS values of

1, 2, 5, 10 TeV from bottom to top. The vertical grey dashed line indicates the value at the one-loop

maximal mixing value bXt =
p
6. The horizontal light grey box is the 1� band Mh = 125.09± 0.24

GeV.

at maximal mixing without light electroweakinos. We can compare with the recent results

produced by the SusyHD code of Ref. [28]. Our values are . 1 GeV higher than the central

result of Ref. [28]. Part of this discrepancy is attributed to the use of the lower value of

yt(Mt): if we instead use the NNLO + N3LO QCD value yt,N3
LO QCD(Mt) = 0.93690, Mh is

lowered by 0.5 GeV. The remaining small di↵erence may be explained by the more complete

calculation of thresholds in the mA ⇠ MS case of Refs. [26, 28].

VI. COMPARISON TO PREVIOUS RESULTS

In this section, we compare our results with the results obtained in the hMSSM scenario

as well in the FeynHiggs version 2.10.2, in which relevant logarithmic e↵ects to the SM

22

Necessary stop masses increase for lower values of tanβ, larger values of  μ

smaller values of the CP-odd Higgs mass or lower stop mixing values.


Lighter stops demand large splittings between left- and right-handed stop masses


G. Lee, C.W.  arXiv:1508.00576

P. Draper, G. Lee, C.W.’13, Bagnaschi et al’ 14, Vega and Villadoro ’14, Bahl et al’17

P. Slavich, S. Heinemeyer et al, arXiv:2012.15629



Stop Searches

Combining all searches, in the simplest decay scenarios, it is hard to

avoid the constraints of 700 GeV for sbottoms and 600 GeV for stops.

Islands in one search are covered by other searches. 

We are starting to explore the mass region suggested by the Higgs mass determination !
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Figure 8: The 95% CL upper limit on the production cross section of the T2tt (upper left),
T2bW (upper right), and T2tb (lower) simplified models as a function of the top squark and
LSP masses. The solid black curves represent the observed exclusion contour with respect
to approximate NNLO+NNLL signal cross sections and the change in this contour due to
variation of these cross sections within their theoretical uncertainties (stheory) [64–74]. The
dashed red curves indicate the mean expected exclusion contour and the region containing
68 and 95% (±1 and 2 sexperiment) of the distribution of expected exclusion limits under the
background-only hypothesis. For T2tt, no interpretation is provided for signal models for
which |met � mec0

1
� mt | < 25 GeV and met < 275 GeV as described in the text.
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Figure 9: The 95% CL upper limit on the production cross section of the T2ttC (upper left),
T2bWC (upper right), and T2cc (lower) simplified models as a function of the top squark mass
and the difference between the top squark and LSP masses. The solid black curves represent the
observed exclusion contour with respect to approximate NNLO+NNLL signal cross sections
and the change in this contour due to variation of these cross sections within their theoretical
uncertainties (stheory) [64–74]. The dashed red curves indicate the mean expected exclusion
contour and the region containing 68% (±1 sexperiment) of the distribution of expected exclusion
limits under the background-only hypothesis.
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FIG. 2: Ratio of the value of the down-type fermion couplings to Higgs bosons to their SM values

in the case of low µ (L1j ⇥ 0), as obtained from Eq. (96), and �d ⌅ 0.

We can reach the same conclusion by using Eq. (21) for s� in this regime,
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This clearly demonstrates that in this case the deviation of (�s�/c⇥) from 1 depends only on

mA and is independent of t⇥. In other words, alignment is only achieved in the decoupling

limit, m2
A ⇤ m2

Z ,m
2
h.

This also agrees with our expressions regarding the approach to the alignment limit via

decoupling, Eq. (77). In this regime �5,6,7 are very small implying

B ⌅ m2
A �m2

h, and B �A ⌅ �(m2
Z +m2

h) . (98)

In Fig. 2 we display the value of �s�/c⇥ in the mA � tan⇥ plane, for low values of µ, for

which the radiative corrections to the matrix element L11 and L12 are small, Eq. (96). As

expected from our discussion above, the down-type fermion couplings to the Higgs become
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We can reach the same conclusion by using Eq. (21) for s� in this regime,

s� =
�(m2

A +m2
Z)s⇥c⇥⇤

(m2
A +m2

Z)
2s2⇥c

2
⇥ +

�
m2

As
2
⇥ +m2

Zc
2
⇥ �m2

h

⇥2 , (96)

which, for mA
>� 2mh and moderate t⇥ implies

� s�
c⇥

⌅ m2
A +m2

Z

m2
A �m2

h

. (97)

This clearly demonstrates that in this case the deviation of (�s�/c⇥) from 1 depends only on

mA and is independent of t⇥. In other words, alignment is only achieved in the decoupling

limit, m2
A ⇤ m2

Z ,m
2
h.

This also agrees with our expressions regarding the approach to the alignment limit via

decoupling, Eq. (77). In this regime �5,6,7 are very small implying

B ⌅ m2
A �m2

h, and B �A ⌅ �(m2
Z +m2

h) . (98)

In Fig. 2 we display the value of �s�/c⇥ in the mA � tan⇥ plane, for low values of µ, for

which the radiative corrections to the matrix element L11 and L12 are small, Eq. (96). As

expected from our discussion above, the down-type fermion couplings to the Higgs become
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Down Couplings in the MSSM for low values of µ
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Ũ Ũ

H1

H2

(a)

H1

H1

Ũ
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FIG. 1: One-loop diagrams contributing to the the coefficient, Z6, of the Higgs basis operator,

(H†
1H1)(H

†
1H2). Using the interaction Lagrangian given in Eq. (51), one sees that the parametric

dependence for the six diagrams are: h4t s
3
βcβX

3
t Yt for (a) and (b); h4t s

3
βcβX

2
t for (c) and (d); and

h4t s
3
βcβXtYt for (e) and (f).

where we have used Eq. (46) to write v2s4βh
4
t = 4m4

t/v
2. Using Eqs. (55) and (56) in the

evaluation of Eq. (30) yields

tβ cβ−α !
−1

m2
H −m2

h

[
m2

h +m2
Z +

3m4
tXt(Yt −Xt)

4π2v2M2
S

(
1−

X2
t

6M2
S

)]
. (57)

At large tβ we have Xt(Yt−Xt) ! µ(Attβ −µ) and X3
t (Yt−Xt) ! µA2

t (Attβ − 3µ), in which

case, Eq. (57) can be rewritten in the following approximate form,

tβ cβ−α !
−1

m2
H −m2

h

[
m2

h +m2
Z +

3m4
t

4π2v2M2
S

{
Atµtβ

(
1−

A2
t

6M2
S

)
− µ2

(
1−

A2
t

2M2
S

)}]
.

(58)
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 Higgs Decay into bottom quarks is the dominant one


 A modification of the bottom quark coupling affects all other decays

Carena, Haber, Low, Shah, C.W. ‘14



Naturalness and Alignment in the (N)MSSM

  It is well known that in the NMSSM there are new contributions to the lightest 
CP-even Higgs mass,


 It is perhaps less known that it leads to sizable corrections to the mixing between 
the MSSM like CP-even states. In the Higgs basis,  (correction to                   )


 The values of lambda end up in a very narrow range, between 0.65 and 0.7 for all 
values of tan(beta), that are the values that lead to naturalness with perturbativity 
up to the GUT scale

W = �SHuHd +


3
S
3

m2
h ' �2 v

2

2
sin2 2� +M2

Z cos2 2� +�t̃

�2 =
m2

h �M2
Z cos 2�

v2 sin2 �

Carena, Haber, Low, Shah, C.W.’15 

M2
S(1, 2) '

1

tan�

�
m2

h �M2
Z cos 2� � �2v2 sin2 � + �t̃

�

see also Kang, Li, Li,Liu, Shu’13,   Agashe,Cui,Franceschini’13
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NMSSM : λ vs tanβ

Values of the µ parameter close to the weak scale and therefore much lower than the stop

masses are preferred in order to obtain a mostly Bino or singlino Dark Matter (DM) candi-

date and to reduce the fine tuning associated with electroweak symmetry breaking [28, 29].

As shown in Eq. (10), the stop loop corrections to M
2
12 not included in M

2
11 are suppressed

by µ/MS ⌧ 1, and one may therefore neglect the stop corrections to find an approximate

relation between the values of � and tan � which satisfy exact alignment. Taking M2
11 = m

2
h
,

Eq. (10) gives [9]

(�A)2 =
m

2
h
�m

2
Z
c2�

v2s2
�

. (12)

FIG. 1: � vs. tan� curves which gives M
2
12 = 0. The solid black line shows exact alignment for

mh = 125 GeV. The shaded region covers mh = 125± 3 GeV, with the upper edge corresponding

to mh = 128 GeV and the lower edge to mh = 122 GeV.

Fig. 1 shows the � vs. tan � curves given by Eq. (12) for mh = (125 ± 3) GeV, where

we have included an uncertainty of 3 GeV characterizing the theoretical uncertainties in

the determination of the Higgs mass. Points within this region will be close to fulfilling

exact alignment, while points close to this region should have small mixing between the

two doublets. We will better define “small” mixing quantitatively in our later analyses.

5



Alignment in the NMSSM (heavy or Aligned singlets)

(i) (ii)
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FIG. 8: Blue shaded region denotes current LHC limits. The ratio of the Higgs coupling to down-

type quarks to the SM limit is shown by the red dashed contours for various values of �.

36

It is clear from this plot that

the NMSSM does an amazing job in 
aligning the  MSSM-like CP-even 
sector, provided   

Carena, Low, Shah, C.W.’13

� ⇠ 0.65

Very relevant phenomenological properties

This range of couplings, and the subsequent alignment, may appear as emergent properties

in a theory with strong interactions at high energies

N. Coyle, C.W.  arXiv:1912.01036



Decays into pairs of SM-like Higgs bosons           
suppressed by alignment

Carena, Haber, Low, Shah, C.W.’15

Crosses : H1 singlet like

Asterix : H2 singlet like
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FIG. 10: Branching ratio of the decay of the heaviest CP-even Higgs boson into pairs of identical

CP-even Higgs bosons. Blue, red and yellow represent values of tan� = 2, 2.5 and 3, respectively.
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FIG. 11: Branching ratios of the decay of the heavy CP-even Higgs boson into a pair of non-identical

lighter CP-even Higgs bosons, H ! hhS (left panel) and into the lightest CP-odd Higgs boson and

a Z boson (right panel). Blue, red and yellow represent values of tan� = 2, 2.5 and 3, respectively.
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energy. There are three primary regions between MZ and MGUT : the low-energy e↵ective

SM theory below MA, the 2HDM region between approximately MA and MSUSY , and the

NMSSM region above MSUSY . We employ the relevant RGE equations within each region;

the equations for each region are listed in Appendix A. At the boundary between the SM and

2HDM running at MA, we relate the single e↵ective Higgs field in the SM to the two Higgs

doublets by � = Hd cos �+ i⌧H
⇤
u
sin �. This relation gives he↵

t
= ht sin �. We approximately

identify the scale of the singlet with MSUSY , and therefore run the parameter � between

MGUT andMSUSY , stopping its running below this scale. The value of tan� is determined by

requiring that the running top mass is equal to approximately mt(Mt) ' 163 GeV, leading

to a pole top quark mass of approximately the observed value, Mt ' 173 GeV.

FIG. 2: Running of � (solid lines) and ht (dashed lines) from the weak scale to higher energies, with

t = ln
⇣

Q
2

M
2
Z

⌘
. We display the running for initial values of (�(MZ), tan�) = (0.67, 1.5), (0.66, 1.7),

and (0.65, 2.0), which lie within the alignment region shown in the previous section.

Fig. 3 shows the results of running down from MGUT to MZ , with initial values of �

between 1 and 5 and values of ht between 0.75 and 3.0 at the GUT scale. The value of  is

set to 0. We find that the results are stable under TeV-scale variations in the value of the

running boundary MSUSY , and thus ignore the small thresholds arising from the decoupling

7

Running of Couplings.  Landau Poles at High Energies
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Range of values for Higgs alignment seems to suggest the appearance of

a strongly interacting sector  (Fat Higgs) at energies close to the GUT scale.



Higgs Alignment and the coupling λ

FIG. 4: Values of the quantity |⌘| for the points obtained from running down from MGUT . We

plot only the points which can obtain the correct Higgs mass at the 2-loop level. Points in the

larger tan� region tend to have lower values of M2
12/(M

2
22 �M

2
11), but due to the larger values

of tan� they obtain larger values of |⌘| than those points at low tan� and �. The shaded grey

region indicates the region in which it is di�cult to obtain a lighter Higgs mass of 125 GeV without

tension with existing stop mass limits.

low values of tan �, the stop loop corrections tend to be smaller than the tree level values,

and there is therefore little variation about the average value along each curve. As required

from the choices made in the running, we use MA = 300 GeV in the calculation of M2
22.

Larger values of MA increase M
2
22 and therefore decrease the mixing.

In the e↵ective 2HDM, the deviations of the SM-like coupling may be parametrized

by [7, 8]

ghbb̄ = g
SM
hbb̄

(1� ⌘) (14)

ghtt̄ = g
SM
htt̄

✓
1 +

⌘

tan2
�

◆
(15)

ghV V = g
SM
hV V

✓
1�

⌘
2

2 tan2
�

◆
(16)
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tension with existing stop mass limits.

low values of tan �, the stop loop corrections tend to be smaller than the tree level values,

and there is therefore little variation about the average value along each curve. As required

from the choices made in the running, we use MA = 300 GeV in the calculation of M2
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of the supersymmetric particles. We display the results for MSUSY = 1 TeV. The value of

MA is chosen to be 300 GeV. Significantly larger values of MA, on the order of MSUSY , push

the ht(MGUT )  1 curves toward large values of tan �. For values of MA . 500 GeV, the

results have little variation.

FIG. 3: Plot showing the (tan�, �(MZ)) points obtained by running down from MGUT with large

�(MGUT ) and moderate ht(MGUT ). The di↵erent contours arise from varying ht(MGUT ), while

the colorbar indicates the value of �(MGUT ). Results are displayed for MSUSY = 1 TeV. The solid

and dashed black lines indicate the region of exact alignment for mh = 125± 3 GeV. The shaded

grey region indicates the region in which it is di�cult to obtain a lighter Higgs mass of 125 GeV

without tension with existing stop mass limits.

The obtention of mh = 125 GeV comes into tension with existing stop mass constraints

for small values of tan � and large values of �(MZ), for which the tree level contribution

to mh becomes large. Tree-level contributions close to the observed Higgs mass result in

the need for small stop loop corrections and hence small values of the stop masses (see

Eq. 9). Based on recent results from stop searches [48–51], we use a stop mass bound of

MS > 800 GeV. We employ a lower bound than some of the quoted values after noting

that the bounds may be relaxed depending on the specific stop decay paths and neutralino

8



Comments

• Flavor or Higgs alignments are not guaranteed. Therefore, beyond the 
standard Higgs searches,  there is a strong motivation to perform the 
following searches :


• Flavor violating decays of the Standard Higgs boson : modified diagonal 
couplings come usually together with flavor violating couplings. So, the 
simple kappa framework is not enough, for more than technical 
reasons  


• Flavor violating decays of non-standard Higgs bosons.  They are 
unsuppressed


• bs transitions are also of interest, although constrained by other 
processes


• Searches for heavy Higgs bosons decaying to other scalar states, non-
necessarily SM Higgs bosons


• I am aware that there are LHC groups working on these subjects. I 
would encourage more people to join these efforts.

<latexit sha1_base64="RckVnk1X050CEJjfyQ7cK4n1bvE="></latexit>

H ! hX,H ! XY, etc.

<latexit sha1_base64="iIosN5dMlLJM3BJgUs1+z31uSBs="></latexit>

h ! µ⌧, h ! µe, h ! e⌧, etc

<latexit sha1_base64="9K+G8tgpOtEDNeqBMko0VN30bq4="></latexit>

H ! tc,H ! µ⌧, H ! µe,H ! e⌧, etc



Conclusions

• Precision Higgs measurement show a good agreement of all couplings with 
respect to the SM expectations


• Two Higgs Doublet Models and singlet extensions provide a good effective 
field theory to the study of LHC data


• Higgs Flavor violating couplings may lead to the first hints of physics BSM.


• Light non-standard Higgs bosons demand alignment in field space of the mass 
eigenstates with the directions acquiring vev’s.


• We discussed a few ways in which alignment may be obtained. 


• Higgs physics remains as the most vibrant field of particle physics, one in 
which many surprises may lay ahead, with profound implications for our 
understanding of Nature. 
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Entanglement Suppression and Alignment



Two States System 

• Let’s take two distinguishable qubits,  A and B, each of them with its own 
basis of vectors


• We can define a quantum state


• Entanglement suppression will occur when we can write this as the product 
of a state in A times one in B.  Mathematically, this occur whenever the so-
called concurrence 

<latexit sha1_base64="h1P803JHBjEf581+BHpj9XwmjFg="></latexit>

|1 >I , |2 >I , I = A,B

<latexit sha1_base64="/xeFPCT7SUSEDDISRSZ2duMIlOY="></latexit>

| >=
2X

i,j=1

cij |i >A |j >B
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Scattering Amplitudes
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FIG. 1. Feynman diagrams of �+
a �

0
b ! �+

c �
0
d scattering in the symmetry broken phase.

the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
0

B@

h
H
G0

A

1

CA = R

0

B@

H0
1

H0
1
⇤

H0
2

H0
2
⇤

1

CA , R =
1

2

0

B@

�s↵̃ �s↵̃ c↵̃ c↵̃
c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is

iMab,cd = iM0
ab,cd

�
v2

2

X

i

X

r=s,t,u

Mr

i ab,cd Pr,i , (17)

M0
ab,cd

=

0

B@

Z1 Z6 Z6 Z5

Z6 Z3 Z4 Z7

Z6 Z4 Z3 Z7

Z5 Z7 Z7 Z2

1

CA , (18)

Ms

i ab,cd = MabiM
⇤
cdi

, Mu

i ab,cd
= MadiM

⇤
cbi

, (19)

M t

i ab,cd
=

X

j,k

RijMajc(RikMdkb,0)
⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams and the cubic vertices Mdkb and Mdkb,0 are

Pt,i =
i

t�m2
0,i

, m0,i = {mh,mH , 0,mA} , (21)

Pr,i =
i

r �m2
+,i

, r = {s, u} , m+,i = {mH± , 0} , (22)

@V

@v

����
v=0

=
1
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X
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+
a
H0

b
H�

c

+
1

2
Mabc,0H

0
a
H0

b
H0

c

⇤ + h.c.

�
. (23)

Complete Feynman rules and full expressions for the
s/t/u-channel amplitudes can be found in the Supple-
mentary Material. In order for the S-matrix to minimize
entanglement and be in [1] for arbitrary kinematics, we
will demand that every term in Eq. (17) satisfies the con-
ditions in Eqs. (13-15). For M0

ab,cd
in Eq. (18), they lead

to Z1 + Z2 = 2Z3, Z4 = Z5 = 0, and Z6 = Z7. These
relations greatly simplify expressions in Mr

i ab,cd. Solving
for entanglement suppressing amplitudes in the s/t/u-
channel then requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (24)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (25)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)

2 (26)

=
Z

2

✓
|H0

1 |
2 + |H0

2 |
2 +G+G� +H+H�

�
v2

2

◆2

,

(27)

(More details can be found in the Supplementary Materi-
als.) The above potential exhibits a maximal SO(8) sym-
metry acting on the 8 real components of the two dou-
blets and is spontaneously broken to SO(7). The spec-
trum contains a massive scalar h with m2

h
= �2Y = Zv2,

while all other scalars are exact Goldstone bosons and
massless. However, recall that the SO(8) symmetry is
explicitly broken by Yukawa and gauge couplings (when
turned on) and the Goldstone bosons will not remain
massless. Furthermore, to achieve a realistic mass spec-
trum consistent with null searches at the LHC, SO(8)
needs to be broken softly by the mass terms [19]. Since
one of the minimization conditions relates Y3 to Z6, which
controls the alignment condition, one could leave Y3 = 0
and introduce an additional Y2 contribution, which fixes
the non-standard Higgs spectrum m2

H
= m2

A
= m2

H± =
Y2 + Zv2/2 (see, for example, Ref. [35]). In the SO(8)
symmetric limit, Y2 = Y1 = �Zv2/2 and the non-
standard Higgses are all massless.

VI. CONCLUSIONS

In this work we analyzed information-theoretic prop-
erties of general 2HDMs, a prototypical example for
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2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
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1 ] is a Goldstone boson. The
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where ↵̃ is the mixing angle in the neutral CP-even sector
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Complete Feynman rules and full expressions for the
s/t/u-channel amplitudes can be found in the Supple-
mentary Material. In order for the S-matrix to minimize
entanglement and be in [1] for arbitrary kinematics, we
will demand that every term in Eq. (17) satisfies the con-
ditions in Eqs. (13-15). For M0

ab,cd
in Eq. (18), they lead

to Z1 + Z2 = 2Z3, Z4 = Z5 = 0, and Z6 = Z7. These
relations greatly simplify expressions in Mr

i ab,cd. Solving
for entanglement suppressing amplitudes in the s/t/u-
channel then requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (24)
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(More details can be found in the Supplementary Materi-
als.) The above potential exhibits a maximal SO(8) sym-
metry acting on the 8 real components of the two dou-
blets and is spontaneously broken to SO(7). The spec-
trum contains a massive scalar h with m2

h
= �2Y = Zv2,

while all other scalars are exact Goldstone bosons and
massless. However, recall that the SO(8) symmetry is
explicitly broken by Yukawa and gauge couplings (when
turned on) and the Goldstone bosons will not remain
massless. Furthermore, to achieve a realistic mass spec-
trum consistent with null searches at the LHC, SO(8)
needs to be broken softly by the mass terms [19]. Since
one of the minimization conditions relates Y3 to Z6, which
controls the alignment condition, one could leave Y3 = 0
and introduce an additional Y2 contribution, which fixes
the non-standard Higgs spectrum m2

H
= m2

A
= m2

H± =
Y2 + Zv2/2 (see, for example, Ref. [35]). In the SO(8)
symmetric limit, Y2 = Y1 = �Zv2/2 and the non-
standard Higgses are all massless.

VI. CONCLUSIONS

In this work we analyzed information-theoretic prop-
erties of general 2HDMs, a prototypical example for

Carena, Low, C.W., Xiao, arXiv:2307.08112

Let’s apply these ideas to the case of two Higgs doublets, with spin states

up (charged) and down (neutral).  Let’s start with a product state and demand that

the final state is not entangled, namely we want to end up in another product state.



Scattering Process

3

is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic prop-
erty of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of T-matrix is given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd is the scattering amplitudes one typically com-
putes in perturbation. Notice that the T-matrix, and
therefore the amplitude itself, is not a unitary operator
and doesn’t admit an interpretation as a quantum gate.
In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP] [3]. However, we argue
that perturbatively the S-matrix could only be in [1] and
not [SWAP]. This is most clear by looking at Eq. (7),
which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].

In what follows we will focus on the flavor subspace of
the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed SU(2)
flavor symmetry in 2HDMs, we would have arrived at
the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
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d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude
includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
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is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.
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erty of 2HDMs, focusing on the S-matrix as an entan-
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identify |iiA = �+
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numbers is that Alice and Bob are then associated with
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In fact, unitarity of the S-matrix requires
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the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
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Demanding that the concurrence in Eq. (1) vanishes,
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bation by keeping only terms linear in Mab,cd, we obtain
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satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
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rotational invariance constrains the s-wave S-matrix to
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operator, then can be thought of as a two-qubit quan-
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and doesn’t admit an interpretation as a quantum gate.
In fact, unitarity of the S-matrix requires

i(T †
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which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
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S-matrix is fulfilled at O(�). It is worth pointing out
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In other words, the S-matrix being in [SWAP] requires
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we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
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dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
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Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain
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satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed SU(2)
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Derivation of Eqs. (13-15): we assume the initial state is

|�ai = |1i+ ✏|2i , |�bi = �|1i+ �|2i , (25)

where ||2 + |✏|2 = |�|2 + |�|2 = 1. The final state is

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi = cij |iji

c11 = (1 + iM11,11)� + iM12,11 � + iM21,11 ✏� + iM22,11 ✏� ,

c12 = iM11,12 � + (1 + iM12,12)� + iM21,12 ✏� + iM22,12 ✏� ,

c21 = iM11,21 � + iM12,21 � + (1 + iM21,21) ✏� + iM22,21 ✏� ,

c22 = iM11,22 � + iM12,22 � + iM21,22 ✏� + (1 + iM22,22) ✏� ,

(26)

The concurrence �(|�c�di) = c11c22 � c12c21 reads
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2) .

(27)

Since , ✏, � and � are arbitrary, setting �(|�c�di) = 0 leads to the conditions in Eqs. (13-15).
In the Higgs basis, the minimization condition leads to the quadratic coe�cients Y1 = �Z1v2/2 and Y3 = �Z6v2/2,

while the mass matrices of the charged and CP even/odd neutral scalars are given by
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The Feynman rules are given by (time goes from left to right)
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Derivation of Eqs. (13-15): we assume the initial state is

|�ai = |1i+ ✏|2i , |�bi = �|1i+ �|2i , (25)

where ||2 + |✏|2 = |�|2 + |�|2 = 1. The final state is
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(27)

Since , ✏, � and � are arbitrary, setting �(|�c�di) = 0 leads to the conditions in Eqs. (13-15).
In the Higgs basis, the minimization condition leads to the quadratic coe�cients Y1 = �Z1v2/2 and Y3 = �Z6v2/2,

while the mass matrices of the charged and CP even/odd neutral scalars are given by
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Concurrence

The concurrence is therefore given  by
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the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
0
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c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is

iMab,cd = iM0
ab,cd

�
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X

i
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r=s,t,u

Mr

i ab,cd Pr,i , (17)
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⇤
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, (19)

M t

i ab,cd
=

X

j,k

RijMajc(RikMdkb,0)
⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams and the cubic vertices Mdkb and Mdkb,0 are

Pt,i =
i

t�m2
0,i

, m0,i = {mh,mH , 0,mA} , (21)

Pr,i =
i

r �m2
+,i

, r = {s, u} , m+,i = {mH± , 0} , (22)
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Complete Feynman rules and full expressions for the
s/t/u-channel amplitudes can be found in the Supple-
mentary Material. In order for the S-matrix to minimize
entanglement and be in [1] for arbitrary kinematics, we
will demand that every term in Eq. (17) satisfies the con-
ditions in Eqs. (13-15). For M0

ab,cd
in Eq. (18), they lead

to Z1 + Z2 = 2Z3, Z4 = Z5 = 0, and Z6 = Z7. These
relations greatly simplify expressions in Mr

i ab,cd. Solving
for entanglement suppressing amplitudes in the s/t/u-
channel then requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (24)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (25)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)

2 (26)

=
Z

2

✓
|H0

1 |
2 + |H0

2 |
2 +G+G� +H+H�

�
v2

2

◆2

,

(27)

(More details can be found in the Supplementary Materi-
als.) The above potential exhibits a maximal SO(8) sym-
metry acting on the 8 real components of the two dou-
blets and is spontaneously broken to SO(7). The spec-
trum contains a massive scalar h with m2

h
= �2Y = Zv2,

while all other scalars are exact Goldstone bosons and
massless. However, recall that the SO(8) symmetry is
explicitly broken by Yukawa and gauge couplings (when
turned on) and the Goldstone bosons will not remain
massless. Furthermore, to achieve a realistic mass spec-
trum consistent with null searches at the LHC, SO(8)
needs to be broken softly by the mass terms [19]. Since
one of the minimization conditions relates Y3 to Z6, which
controls the alignment condition, one could leave Y3 = 0
and introduce an additional Y2 contribution, which fixes
the non-standard Higgs spectrum m2

H
= m2

A
= m2

H± =
Y2 + Zv2/2 (see, for example, Ref. [35]). In the SO(8)
symmetric limit, Y2 = Y1 = �Zv2/2 and the non-
standard Higgses are all massless.

VI. CONCLUSIONS

In this work we analyzed information-theoretic prop-
erties of general 2HDMs, a prototypical example for

At tree level, in the symmetric phase, the amplitudes receive contributions from 
the quartic couplings. In the broken phase, however, receives contribution from

diagrams that involve the interchange of standard and non-standard Higgs 
bosons.


Charged mediators, however, lead to entanglement in the broken phase and 
suppression of entanglement demands equality of the masses of the

charged Higgs and Goldstone modes. Carena, Low, C.W., Xiao, arXiv:2307.08112
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is

iMab,cd = iM0
ab,cd
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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1H1 +H†
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2
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),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
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diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/
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2 ), where G
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boson and H+ is the massive charged scalar. In the neu-
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
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,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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d scattering in the symmetry broken phase.

includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/
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and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0
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in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr
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ment suppressing amplitudes in the s/t/u-channel then
requires:
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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Derivation of Eqs. (13-15): we assume the initial state is

|�ai = |1i+ ✏|2i , |�bi = �|1i+ �|2i , (25)

where ||2 + |✏|2 = |�|2 + |�|2 = 1. The final state is

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi = cij |iji

c11 = (1 + iM11,11)� + iM12,11 � + iM21,11 ✏� + iM22,11 ✏� ,

c12 = iM11,12 � + (1 + iM12,12)� + iM21,12 ✏� + iM22,12 ✏� ,

c21 = iM11,21 � + iM12,21 � + (1 + iM21,21) ✏� + iM22,21 ✏� ,

c22 = iM11,22 � + iM12,22 � + iM21,22 ✏� + (1 + iM22,22) ✏� ,

(26)

The concurrence �(|�c�di) = c11c22 � c12c21 reads

�(|�c�di) = i✏��(M11,11 �M12,12 �M21,21 +M22,22)

+ i✏(�2
� �2)(M21,22 �M11,12) + i(2

� ✏2)��(M12,22 �M11,21)

� iM12,21 2�2 � iM21,12 ✏2�2 + iM11,22 2�2 + iM22,11 ✏2�2 +O((Mab,cd)
2) .

(27)

Since , ✏, � and � are arbitrary, setting �(|�c�di) = 0 leads to the conditions in Eqs. (13-15).
In the Higgs basis, the minimization condition leads to the quadratic coe�cients Y1 = �Z1v2/2 and Y3 = �Z6v2/2,

while the mass matrices of the charged and CP even/odd neutral scalars are given by

m2
+ =

✓
0 0
0 Y2 + Z3v2/2

◆
, (28)

m2
even =

✓
Z1v2 Z6v2

Z6v2 Y2 + (Z3 + Z4 + Z5)v2/2

◆
, (29)

m2
odd =

✓
0 0
0 Y2 + (Z3 + Z4 � Z5)v2/2

◆
. (30)

The Feynman rules are given by (time goes from left to right)
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Applying Eqs. (13-15) to the four-point coupling in Eq. (35) we arrive at

Z1 + Z2 = 2Z3 ,

Z4 = Z5 = 0 ,

Z6 = Z7 .

(36)

Using the relations in Eq. (36), the s/u-channel amplitudes are,
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The condition M11,22 = M12,21 = 0 then requires

Z6 = 0 . (41)

The resulting amplitude in the t-channel is:

M t

1 =

0

B@

8Z2
1s

2
↵̃

�2Z1Z3c↵̃s↵̃ 0 0
�2Z1Z3c↵̃s↵̃ 4Z1Z3s2↵̃ 0 0

0 0 8Z1Z3s2↵̃ �2Z2
3c↵̃s↵̃

0 0 �2Z2
3c↵̃s↵̃ 4Z2

3s
2
↵̃

1

CA , (42)

M t

2 =

0

B@

8Z2
1c

2
↵̃

2Z1Z3c↵̃s↵̃ 0 0
2Z1Z3c↵̃s↵̃ 4Z1Z3c2↵̃ 0 0

0 0 8Z1Z3c2↵̃ 2Z2
3c↵̃s↵̃

0 0 2Z2
3c↵̃s↵̃ 4Z2

3c
2
↵̃

1

CA , (43)

M t

3 = M t

4 = 0 . (44)

Higgs  Masses and Trilinear Couplings in the Broken Phase
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Solving for M11,12 = M21,22 we get Z1 = Z3 and, together with Eqs. (36) and (41), this leads to the first half of
Eq. (22),

Z1 = Z2 = Z3 = Z , Zi = 0 for i 6= 1, 2, 3 . (45)

Then both M t

i
, i = 1, 2, satisfy the entanglement suppression conditions in Eqs. (13-15), including the diagonal

condition in Eq. (13): M11,11 �M12,12 �M21,21 +M22,22 = 0. However, for Ms,u we now have
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which do not individually satisfy the diagonal condition. The only solution is then to require Ps,1 = Ps,2 and
Pu,1 = Pu,2 so that the sum of the two matrices above satisfies the diagonal condition. This requires the two charged
scalars to be degenerate in mass, mH± = mG± = 0. Given the mass matrix of the charged scalars in eq. (28), it
implies that Y2 = �Zv2/2 = Y1 and all scalars other than h are massless Goldstone bosons, which lead to the SO(8)
symmetric potential.
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the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
0
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h
H
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1
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CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is

iMab,cd = iM0
ab,cd

�
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= MadiM

⇤
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, (19)

M t

i ab,cd
=

X

j,k

RijMajc(RikMdkb,0)
⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams and the cubic vertices Mdkb and Mdkb,0 are

Pt,i =
i

t�m2
0,i

, m0,i = {mh,mH , 0,mA} , (21)

Pr,i =
i

r �m2
+,i

, r = {s, u} , m+,i = {mH± , 0} , (22)
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�
. (23)

Complete Feynman rules and full expressions for the
s/t/u-channel amplitudes can be found in the Supple-
mentary Material. In order for the S-matrix to minimize
entanglement and be in [1] for arbitrary kinematics, we
will demand that every term in Eq. (17) satisfies the con-
ditions in Eqs. (13-15). For M0

ab,cd
in Eq. (18), they lead

to Z1 + Z2 = 2Z3, Z4 = Z5 = 0, and Z6 = Z7. These
relations greatly simplify expressions in Mr

i ab,cd. Solving
for entanglement suppressing amplitudes in the s/t/u-
channel then requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (24)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (25)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)

2 (26)

=
Z

2

✓
|H0

1 |
2 + |H0

2 |
2 +G+G� +H+H�

�
v2

2

◆2

,

(27)

(More details can be found in the Supplementary Materi-
als.) The above potential exhibits a maximal SO(8) sym-
metry acting on the 8 real components of the two dou-
blets and is spontaneously broken to SO(7). The spec-
trum contains a massive scalar h with m2

h
= �2Y = Zv2,

while all other scalars are exact Goldstone bosons and
massless. However, recall that the SO(8) symmetry is
explicitly broken by Yukawa and gauge couplings (when
turned on) and the Goldstone bosons will not remain
massless. Furthermore, to achieve a realistic mass spec-
trum consistent with null searches at the LHC, SO(8)
needs to be broken softly by the mass terms [19]. Since
one of the minimization conditions relates Y3 to Z6, which
controls the alignment condition, one could leave Y3 = 0
and introduce an additional Y2 contribution, which fixes
the non-standard Higgs spectrum m2

H
= m2

A
= m2

H± =
Y2 + Zv2/2 (see, for example, Ref. [35]). In the SO(8)
symmetric limit, Y2 = Y1 = �Zv2/2 and the non-
standard Higgses are all massless.

VI. CONCLUSIONS

In this work we analyzed information-theoretic prop-
erties of general 2HDMs, a prototypical example for

This leads to an extended symmetry, namely an SO(8) symmetry 
broken spontaneously to SO(7)

This extended symmetry ensures the alignment of the Higgs sector.  
It leads to  

<latexit sha1_base64="xxXFNRhb3Zbwlpp8/NPL2G57agY="></latexit>

�1 = �2 = �3 = Z, �i = 0, i 6= 1, 2, 3, in any basis

that is one of the ways of getting alignment.  

Bhupal and Pilaftsis, 1408.3405

Carena, Low, C.W., Xiao, arXiv:2307.08112
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ditions in Eqs. (13-15). For M0

ab,cd
in Eq. (18), they lead

to Z1 + Z2 = 2Z3, Z4 = Z5 = 0, and Z6 = Z7. These
relations greatly simplify expressions in Mr

i ab,cd. Solving
for entanglement suppressing amplitudes in the s/t/u-
channel then requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (24)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (25)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)
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(More details can be found in the Supplementary Materi-
als.) The above potential exhibits a maximal SO(8) sym-
metry acting on the 8 real components of the two dou-
blets and is spontaneously broken to SO(7). The spec-
trum contains a massive scalar h with m2

h
= �2Y = Zv2,

while all other scalars are exact Goldstone bosons and
massless. However, recall that the SO(8) symmetry is
explicitly broken by Yukawa and gauge couplings (when
turned on) and the Goldstone bosons will not remain
massless. Furthermore, to achieve a realistic mass spec-
trum consistent with null searches at the LHC, SO(8)
needs to be broken softly by the mass terms [19]. Since
one of the minimization conditions relates Y3 to Z6, which
controls the alignment condition, one could leave Y3 = 0
and introduce an additional Y2 contribution, which fixes
the non-standard Higgs spectrum m2

H
= m2

A
= m2

H± =
Y2 + Zv2/2 (see, for example, Ref. [35]). In the SO(8)
symmetric limit, Y2 = Y1 = �Zv2/2 and the non-
standard Higgses are all massless.

VI. CONCLUSIONS

In this work we analyzed information-theoretic prop-
erties of general 2HDMs, a prototypical example for
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the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
0
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is
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M t
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RijMajc(RikMdkb,0)
⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams and the cubic vertices Mdkb and Mdkb,0 are

Pt,i =
i

t�m2
0,i

, m0,i = {mh,mH , 0,mA} , (21)

Pr,i =
i
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+,i

, r = {s, u} , m+,i = {mH± , 0} , (22)
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Complete Feynman rules and full expressions for the
s/t/u-channel amplitudes can be found in the Supple-
mentary Material. In order for the S-matrix to minimize
entanglement and be in [1] for arbitrary kinematics, we
will demand that every term in Eq. (17) satisfies the con-
ditions in Eqs. (13-15). For M0

ab,cd
in Eq. (18), they lead

to Z1 + Z2 = 2Z3, Z4 = Z5 = 0, and Z6 = Z7. These
relations greatly simplify expressions in Mr

i ab,cd. Solving
for entanglement suppressing amplitudes in the s/t/u-
channel then requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (24)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (25)

which lead to the scalar potential,
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(More details can be found in the Supplementary Materi-
als.) The above potential exhibits a maximal SO(8) sym-
metry acting on the 8 real components of the two dou-
blets and is spontaneously broken to SO(7). The spec-
trum contains a massive scalar h with m2

h
= �2Y = Zv2,

while all other scalars are exact Goldstone bosons and
massless. However, recall that the SO(8) symmetry is
explicitly broken by Yukawa and gauge couplings (when
turned on) and the Goldstone bosons will not remain
massless. Furthermore, to achieve a realistic mass spec-
trum consistent with null searches at the LHC, SO(8)
needs to be broken softly by the mass terms [19]. Since
one of the minimization conditions relates Y3 to Z6, which
controls the alignment condition, one could leave Y3 = 0
and introduce an additional Y2 contribution, which fixes
the non-standard Higgs spectrum m2

H
= m2

A
= m2

H± =
Y2 + Zv2/2 (see, for example, Ref. [35]). In the SO(8)
symmetric limit, Y2 = Y1 = �Zv2/2 and the non-
standard Higgses are all massless.

VI. CONCLUSIONS

In this work we analyzed information-theoretic prop-
erties of general 2HDMs, a prototypical example for

This leads to an extended symmetry, namely an SO(8) symmetry 
broken spontaneously to SO(7)

All non-standard Higgs bosons acquire masses degenerate with the 
Goldstone boson masses, namely zero !


This phenomenologically unacceptable, of course. A way of fixing this 
problem is to add a soft mass Y_2, that lift all the non-standard Higgs 
Boson masses, but keeps the alignment conditions.

<latexit sha1_base64="SVOw9F+lOlKAYr7NPOF3InINsCo="></latexit>

M2
NSM = Y2 + Z3v

2 = M2
H+ for Z4 = Z5 = Z6 = 0

Carena, Low, C.W., Xiao, arXiv:2307.08112



Entanglement Enhancement
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Six Massless (not three, not seven) bosons appear.  It turns out that one can describe this

systems in terms of SU(4).  Symmetry with respect to eight generators is found, and two

of these symmetries remain after symmetry breaking. 6 are broken. More, later ….
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A Higgs with a mass of about 125 GeV allows to study many decay channels

LHC Higgs Production Channels 

and Decay Branching Ratios

We collide two protons (quarks and gluons) at high energies : 

H

63



Why we should be surprised

• The Higgs potential suffers from a problem of stability under ultraviolet corrections, 
namely, given any sector that couples to the Higgs sector with gauge invariant 
masses, the Higgs mass parameter will be affected


• These are physical corrections, regularization independent and shows that unless the 
new physics is lighter than the few TeV scale of very weakly coupled to the Higgs 
sector, the presence of a weak scale mass parameter is hard to understand. 


• This is particularly true in models that try to connect the Higgs with the ultraviolet 
physics, like Grand Unified Theories. 


• In such a case, we need a delicate cancellation of corrections, that only an extension 
like Supersymmetry can provide. 
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Relation between couplings in Higgs and general bases

quartic couplings are:

�1 = Z1c
4
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4
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+
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2
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2
2� � 2s2�

�
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�
, (85a)
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4
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�
, (85b)
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4
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i�]c2
�
,

where we’ve defined Z345 ⌘ (Z3 + Z4 + Re[Z5e2i�]). For the reverse conversion from the
Higgs basis to the general basis, one can perform the same series of identifications, but
substituting �i $ Zi and � $ ��.

B. Connection between ⇣ and m2
H±

We want to understand why it turns out to be the case that the charged Higgs mass
squared m2

H± is related to the Lagrange multiplier ⇣ as:

⇣ =
m2

H±

v2
. (86)

First, we need to understand what the Lagrange multiplier tells us. Let the constrained
function we want to extremize be:

V (rµ, ⇣) = V (rµ) � ⇣

✓
1

2
rµrµ � c

◆
, (87)

where V = �Mµrµ + 1
2⇤µ⌫rµr⌫ , Mµ and ⇤µ⌫ are given in Ref. [30], and

rµ =
�
|�1|

2 + |�2|
2, 2Re[�†

1�2], 2Im[�†
1�2], |�1|

2
� |�2|

2
�

. (88)

In the case presented in the main text, we have c = 0, corresponding to the fact that
the constraint is rµrµ = 0 (i.e. no charge breaking minima are allowed). However, we
will for the moment retain non-zero c to see what happens when we allow the constraint

32

with ⇤0 the “timelike" eigenvalue and ⇤i “spacelike". Let us define the “signature matrix"
S as S ⌘ ⇤µ⌫ � ⇣gµ⌫ . In diagonal form, it looks like:

S =

0

BB@

⇤0 � ⇣ 0 0 0
0 ⇣ � ⇤1 0 0
0 0 ⇣ � ⇤2 0
0 0 0 ⇣ � ⇤3

1

CCA . (49)

The discriminant is generically given by the determinant of the signature matrix:

D = det S . (50)

By using the diagonal form above, we can write this in the form:

D = (⇤0 � ⇣)(⇣ � ⇤1)(⇣ � ⇤2)(⇣ � ⇤3) . (51)

We finally come to the vacuum stability condition. Suppose we have already verified
that our potential is BFB and calculated the discriminant, time-like eigenvalue ⇤0, and
Lagrange multiplier ⇣.

We are in a global minimum if and only if :

(
D > 0 , or
D < 0 and ⇣ > ⇤0 .

(52)

For our purposes, it’s more useful to work with the “Euclideanized" version of ⇤µ⌫

obtained by lowering one of the indices with the Minkowski metric, ⇤E ⌘ ⇤µ

⌫
. Explicitly:
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In terms of ⇤E, the discriminant is:

D = � det[⇤E � 1⇣] . (54)

The other quantity necessary for formulating the discriminant is the Lagrange mul-
tiplier ⇣. This may be obtained by looking at any component of the minimization
condition:

⇤µ

⌫
r⌫ � Mµ = ⇣rµ . (55)

We parameterize the vevs of the doublets as:

h�1i =
1

p
2

✓
0
v1

◆
, h�2i =

1
p

2

✓
0

v2ei⌘

◆
. (56)

Then the expectation value of field bilinears rµ ⌘ hrµi is:

rµ =
�

1
2(v

2
1 + v2

2), v1v2 cos ⌘, v1v2 sin ⌘, 1
2(v

2
1 � v2

2)
�

. (57)
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δ=η

The opposite relation between quartic couplings in the Higgs basis and 
those in the weak basis can be obtained by changing β by -β

λ


