

Dark matter dynamics with light scalars

Sreemanti Chakraborti **IPPP, Durham University**

September 6, 2024

T. Binder, SC, S. Matsumoto and Y. Watanabe, JHEP 01 (2023) 106

WORKSHOP ON MULTI-HIGGS MODELS 2024

Santander UNIVERSIDADES

WIMP paradigm: $\sigma_{ann}(v/c) \approx 1 \text{ pb} \Rightarrow \Omega_{DM} \approx 0.12$

 $\mathbf{S} = \mathbf{E} = \mathbf{E} + \mathbf{E} +$

$$\sigma(v/c) \propto \begin{cases} G^2_F m_{_{DM}}^2 \text{ for } m_{_{DM}}^{<<} m_W \\ 1/m_{_{DM}}^2 \text{ for } m_{_{DM}}^{>>} m_W \end{cases}$$

It modeled decades of direct search experiment designs

 $>> m_w$

٠

Maybe lighter dark sectors?

There is a large, potentially interesting part of thermal DM parameter space that is not so sensitive to DM-nuclear scattering, but is potentially within reach of other probes

How to have Light DM?

Freeze-out scenario with **light dark matter** requires a **light mediator** to explain the relic density, or dark matter is overproduced.

Challenges

DM of mass range 100 MeV-a few GeV

T. Slatyer, Phys. Rev. D 93, 023527 (2016)

Ways around

Velocity-dependent annihilation cross-section ??

Ways around

Velocity-dependent annihilation cross-section ??

New particles

• Scalar 1 : χ , Z_2 odd \rightarrow **DM** • Scalar 2 : φ' , charge neutral

$$\mathscr{L} = \mathscr{L}_{SN}$$

 $V(\Phi,H)$

After the electroweak symmetry breaking

 $H = (0, v_H + h')^T / \sqrt{2}, v_H \simeq 246 \,\text{GeV} \qquad \begin{pmatrix} h \\ \phi \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h' \\ \phi' \end{pmatrix}$ $\Phi = v_{\Phi} + \varphi', v_{\Phi} = 0$

$$\begin{split} {}_{\mathrm{M}} &+ \frac{1}{2} (\partial_{\mu} \chi)^{2} - \frac{\mu_{\chi}^{2}}{2} \chi^{2} - \frac{\lambda_{H\chi}}{2} |H|^{2} \chi^{2} - \frac{\lambda_{\chi}}{4!} \chi^{4} \\ &+ \frac{1}{2} (\partial_{\mu} \Phi)^{2} - \frac{\mu_{\Phi\chi}}{2} \Phi \chi^{2} - \frac{\lambda_{\Phi\chi}}{4} \Phi^{2} \chi^{2} - V(\Phi) \\ &= \mu_{\Phi H} \Phi |H|^{2} + \frac{\lambda_{\Phi H}}{2} \Phi^{2} |H|^{2} + \mu_{1}^{3} \Phi + \frac{\mu_{\Phi}^{2}}{2} \Phi^{2} + \frac{\mu_{3}}{3!} \Phi^{3} + \frac{\lambda_{\Phi}}{4} \Phi^{3} \chi^{4} \end{split}$$

$$C_{h\chi\chi} = \lambda_{H\chi} v_H c_\theta - \mu_\Phi$$

$$C_{\phi\chi\chi} = \lambda_{H\chi} v_H s_\theta + \mu_\Phi$$

$$C_{hh\chi\chi} = \lambda_{H\chi} c_\theta^2 + \lambda_{\Phi\chi} s_\theta^2$$

$$C_{\phi h\chi\chi} = \lambda_{H\chi} c_\theta s_\theta - \lambda_{\Phi\chi}$$

$$C_{\phi \phi \chi\chi} = \lambda_{H\chi} s_\theta^2 + \lambda_{\Phi\chi} c_\theta^2$$

not suppressed by mixing angle

$$\Gamma\left(\phi \to \mathrm{SMs}\right) = \sin^2\theta \ \mathsf{I}$$

If $m_{\phi} > 2m_{\chi}$, mediator decays almost entirely into DM

Parameters

• $v_R \equiv 2\left(\frac{m_{\varphi}}{m_{\chi}}-2\right)^{1/2}$

• $\gamma_{\varphi} = \frac{1}{64\pi} \left(\frac{C_{\varphi\chi\chi}}{m_{\varphi}} \right)^2$

 $m_{\varphi} > 2m_{\chi}$

• $C_{\varphi\varphi\chi\chi}$ • $C_{h\chi\chi}$ • $C_{\varphi \phi h}$ | ʹφφφφ ʹφφφ

CMB anisotropy

CMB puts a bound on electromagnetic energy injection into primordial plasma

To suppress annihilation at recombination maximally, one needs only the s-wave part of $\langle \sigma v \rangle_{ann}$

Slayter et al. 2016

Relic density

$$\sigma v \left(\chi \chi \to f_{\rm SM} \right) \simeq \frac{32 C_{\phi \chi \chi}^2}{m_{\phi}^5} \frac{\left[\Gamma \left(\phi \to f_{\rm SM} \right) \right]_{m_{\phi}^2 \to s}}{\left(v^2 - v_R^2 \right)^2 + 16 \Gamma_{\phi}^2(s) / m_{\phi}^2} \qquad \left\langle \sigma v \left(\chi \chi \to f_{\rm SM} \right) \right\rangle_{v_0} \simeq \int_0^\infty dv \, \sigma v \left(\chi \chi \to f_{\rm SM} \right) f(v, w) dv \, \sigma v \left(\chi \to f_{\rm SM} \right) f(v, w) dv \, \sigma v \left(\chi \to f_{\rm SM} \right) f(v, w) dv \, \sigma v \left(\chi \to f_{\rm SM} \right) f(v, w) dv \, \sigma v \, \sigma v \left(\chi \to f_{\rm SM} \right)$$

- At freeze-out, v_R is closer to v_{FO} compared to that of CMB, so BW enhancement is significant.
- relic density
- freeze out : early kinetic decoupling
- The effect is maximal when $T_{kd} \sim \mathcal{O}(T_{\text{freeze}})$

• The enhanced cross-section must go with suppressed couplings to match with the observed

• Suppressed coupling with SM particles lead to insignificant energy exchange with thermal bath through scatterings, DM kinetically decouples from the thermal bath much earlier than usual

• For DM mass below 10 GeV, observed relic density fixes the mixing angle in the range

• $v_R \sim 100 \text{ km/s} \sim 10^{-3}$

Mediator mass above ~ 4 GeV is excluded

$10^{-6} \lesssim \sin\theta \lesssim 10^{-3}$

• PLANCK $f_{eff}(m_{\chi}) \langle \sigma v \rangle_{v_{DM}} / m_{\chi} \le 4.1 \times 10^{-28} \text{ cm}^{3/s/GeV} \text{ at } 95\% \text{ C.L.}$

Collider searches

the light mediator can be probed in the searches for invisible rare decays of mesons

Current limits : Belle, BaBar, E949, NA62, and KOTO at 90% C.L. **Future projections** : Belle II and KLEVER

Direct detection

$$\sigma_{\rm SI}(\chi N \to \chi N) = \frac{f_N^2 m_N^4}{4\pi v_H^2 (m_\chi + m_N)^2} \left(\sin\theta \frac{C_{\phi\chi\chi}}{m_\phi^2} + \cos\theta \frac{C_{h\chi\chi}}{m_h^2}\right)^2$$

 $\sigma_{\rm SI}$ is minuscule due to tiny sin θ and γ_{ϕ} throughout the analysis

- **Current limits** : CDEX, DarkSide-50 and XENON1T(*M*) at 90% C.L.
- Future projections : NEWS-G, SuperCDMS, CYGNUS, and DARWIN

Indirect detection

$$v_R \sim 10^{-3} \sim v$$

DM annihilation cross-section at present epoch has the maximal contribution from the higher partial waves

Indirect detection can constrain DM annihilation into electromagnetically charged particles

For our analysis

v_{DM} at present epoch

• DM annihilation into leptons contributes to cosmic ray flux

Limits available from Voyager I, being the only

Cosmic ray observations

- Annihilation considered only into lepton pairs
- Grey area excluded by Voyager I at 90% C.L.

Several parameter sets survive within 250 MeV $\leq m_{\chi} \leq 2$ GeV

γ -ray observations

gamma-ray flux from the dark matter annihilation at the galactic center

• $v_0 = 400 \text{ km/s}$

- DM annihilation cross section into SM lepton pairs
- Grey area excluded by COMPTEL at 90% C.L.
- GECCO projection in green

Near future observation almost covers surviving parameter region for 250 MeV $\leq m_{\gamma} \leq 2$ GeV

Take home

- \checkmark We have considered a GeV-scale dark matter model with two singlet scalars, one acting as DM while the other is the mediator
- ✓ DM annihilation is essentially s-wave
- Strong CMB-constraints are evaded by tuning the resonance parameters
- ✓ Focussing on the BW resonance region makes way for interesting probes through indirect searches
- ✓ Low-energy direct detection and accelerator searches (proton and electron beam-dumps, searches through rare meson decays etc) give complementary probes

Backup

Problem !!

• 4 GeV $\leq m_{\phi} \leq 2m_{b}$, and $m_{\phi} \geq 2m_b$

500 MeV $\leq m_{\phi} \leq 4$ GeV But...

No robust way to calculate fragmentation function for hadronic final states

Kinetic decoupling

- **O** Thermalization of DM occurs primarily through an exchange of energy due to collisions with the SM plasma O For small couplings, kinetic equilibrium is not always maintained, and DM can decouple from the thermal bath earlier than usual
- We assume that χ has significant self interactions and after kinetic decoupling has occurred, reaches equilibrium at a temperature T_{γ} which is different from the plasma temperature T.
- When DM decouples thermally from the primordial plasma, its temperature drops faster than usual. T_{γ} decreases as a^{-2} , while T scales approximately like a^{-1} . As DM cools down, the annihilation cross-section $\langle \sigma v_{ann} \rangle$ increases, and hence relic density drops.

