### A TeV-Scale 3-loop Neutrino Mass model with Dark Matter and Baryogenesis

### Shinya KANEMURA OSAKA University



Osaka Univ. Dr. Wani

Multi Higgs Models, Sep 6, 2024 at IST, Lisbon



## Machikane-Wani



ウィキペディア

Osaka University Official Mascot Character "Dr. Wani"



1964 discovered on Campus of Osaka Univ. Japan's first crocodile fossil about 400,000 years ago (7 m) Japanese: Machikane-Wani Scientific name: *Toyotamaphimeia machikanensis* 

> Machikane-Wani is a member of Osaka University's It is popular as a symbolic presence



D. Wani When he was School of Science

### HPNP2025

Higgs as a Probe of New Physics 2025

9 -13 June, 2025

Nambu Yoichiro Hall The University of OSAKA Japan



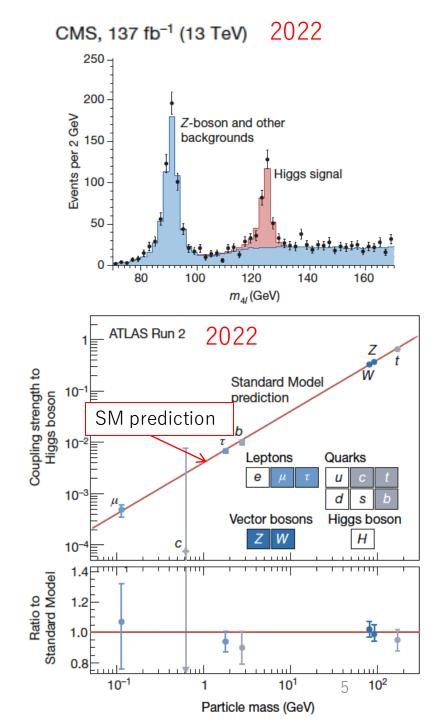


Announcement will come soon!

Expo 2025 in Osaka



### Introduction


# **Current Situation**

### Higgs Discovery 2012

Mass 125 GeV Spin • Parity

**Good agreement** with SM prediction

**No BSM particle** has found up to now



# **Motivation to BSM**

SM is a good description of the nature around the EW scale, however ….

 Gravity Unification Flavor
 Hierarchy Strong CP

 No principle in the Higgs sector
 Hierarchy Strong CP

 Beyond SM phenomena
 Neutrino Oscillation Dark Matter Baryon Asymmetry of Universe ...

SM must be replaced by a new more fundamental theory

### Standard Model:

 $\mathcal{L} = -\frac{1}{{}_{\!\!A}}G_{\mu\nu}G^{\mu\nu} - \frac{1}{{}_{\!\!A}}W_{\mu\nu}W^{\mu\nu} - \frac{1}{{}_{\!\!A}}B_{\mu\nu}B^{\mu\nu}$ Lagrangian Gauge interactions Beautiful being determined by  $+\overline{Q}_{L}i\gamma^{\mu}D_{\mu}Q_{L}+\overline{L}_{L}i\gamma^{\mu}D_{\mu}L_{L}$ the gauge principle  $+\overline{u}_{B}i\gamma^{\mu}D_{\mu}u_{B}+\overline{d}_{B}i\gamma^{\mu}D_{\mu}d_{B}+\overline{e}_{B}i\gamma^{\mu}D_{\mu}e_{B}$  $-\left\{Y_{u}Q_{L}\tilde{\Phi}u_{R}+Y_{e}Q_{L}\Phi d_{R}+Y_{e}Q_{L}\Phi e_{R}+(\text{h.c.})\right\}$ **EWSB for mass** Yukawa interactions Yukawa couplings  $+|D_{\mu}\Phi|^2 - V(\Phi)$  Higgs Potential **Kinetic term of Higgs Higgs potential** No principle, by hand Perhaps a beautiful principle behind? Higgs is a probe of new physics!

# Higgs sector is a probe of new physcs

Higgs sector remains unknown

Multiplet StructureHiggs Potential(Dynamics of EWSB, EWPT, ···)Yukawa Structure(Flavor Physics, CPV, ···)Elementary or Composite? Hierarchy?

SM Higgs sector: no principle

**Extension** of the Higgs sector

⇒ BSM phenomena may be explained

Tiny neutrino mass Phase Transition (1<sup>st</sup> Order) CPV sources for baryogenesis DM candidates

. . .

**Testable at current and future experiments** 

## New Physics and Multi-Higgs Models

Typical scenarios using TeV scale physics by extended Higgs

RHN,  $Z_2$ 

- BAU EW Baryogenesis CPV, 1stOPT
- Neutrino mass Loop induced
- Dark Matter WIMP Z<sub>2</sub>

Can we combine these scenarios into a model?

## EW Baryogenesis

# EW Baryogenesis

#### **Sakharov Conditions**

#### Kuzmin, Ruvakov, Shaposhnikov (1985)

- 1) B non-conservation
- 2) C and CP violation
- 3) Departure from thermal equilibrium

### SM cannot satisfy them

**Extension of the Higgs sector is required** 

- Sphaleron transition at high T
- C violation (SM is a chiral theory) CP in extended Higgs sectors



# 2HDM (viable scenario)

Higgs potenshal

$$V = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - (\mu_3^2 (\Phi_1^{\dagger} \Phi_2) + h.c.) \qquad \Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h_1+iG^0) \end{pmatrix} \quad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(h_2+ih_3) + \frac{1}{2}\lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_2^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_4 (\Phi_2^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_2^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_2^{\dagger}$$

<u>To satisfy LHC data</u>, avoid mixing between *h* and heavy Higgs bosons:  $\lambda_6 \sim 0$ 

 $\begin{array}{ll} \text{Mass matrix} \\ \text{of neutral scalar} \\ \text{bosons} \end{array} \mathcal{M}^2 = v^2 \begin{pmatrix} \lambda_1 & \boxed{\text{Re}[\lambda_6]} & -\text{Im}[\lambda_6] \\ \hline{\text{Re}[\lambda_6]} & \frac{M^2}{v^2} + \frac{1}{2}(\lambda_3 + \lambda_4 + \text{Re}[\lambda_5]) & -\frac{1}{2}\text{Im}[\lambda_5] \\ -\text{Im}[\lambda_6] & -\frac{1}{2}\text{Im}[\lambda_5] & \frac{M^2}{v^2} + \frac{1}{2}(\lambda_3 + \lambda_4 - \text{Re}[\lambda_5]) \end{pmatrix} \\ = \begin{pmatrix} m_h^2 & 0 & 0 \\ 0 & m_{H_2}^2 & 0 \\ 0 & 0 & m_{H_3}^2 \end{pmatrix} \begin{array}{l} \text{Higgs} \\ \text{alignment} \\ \text{arg}[\lambda_7] \equiv \theta_7 \\ \text{rephasing} \end{pmatrix}$ 

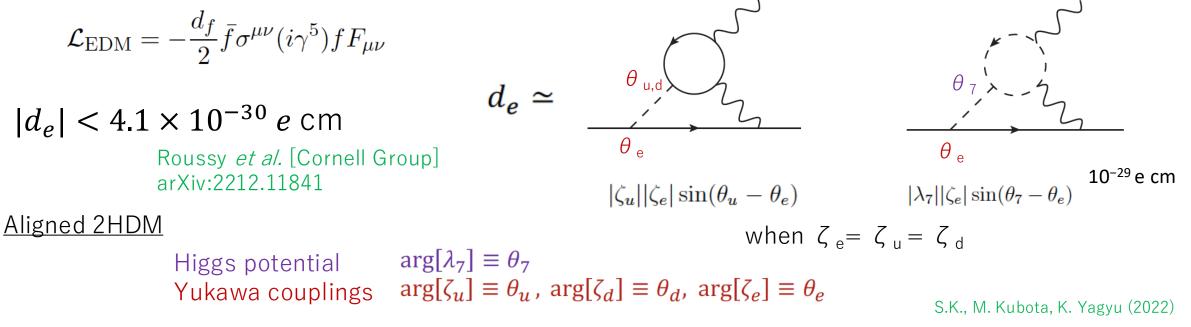
<u>Avoiding FCNC</u>: Yukawa alignment is imposed by hand  $y_f^2 = \zeta_f y_f^1$  (f = u, d, e)

$$\mathcal{L}_{y} = -\overline{Q}_{L} \frac{\sqrt{2}M_{u}}{v} \left(\tilde{\Phi}_{1} + \zeta_{u}^{*}\tilde{\Phi}_{2}\right) u_{R} - \overline{Q}_{L} \frac{\sqrt{2}M_{d}}{v} \left(\Phi_{1} + \zeta_{d}\Phi_{2}\right) d_{R} - \overline{L}_{L} \frac{\sqrt{2}M_{e}}{v} \left(\Phi_{1} + \zeta_{e}\Phi_{2}\right) e_{R} + h.c.$$
Yukawa
alignme

alignment Pich and Tuzon (2009)

Multiple CPV phases Higgs potential  $\arg[\lambda_7] \equiv \theta_7$ Yukawa couplings  $\arg[\zeta_u] \equiv \theta_u$ ,  $\arg[\zeta_d] \equiv \theta_d$ ,  $\arg[\zeta_e] \equiv \theta_e$ 

SK, M. Kubota, K. Yagyu (2020) K. Enomoto, SK, Y. Mura (2021)


<u>Higgs basis</u>

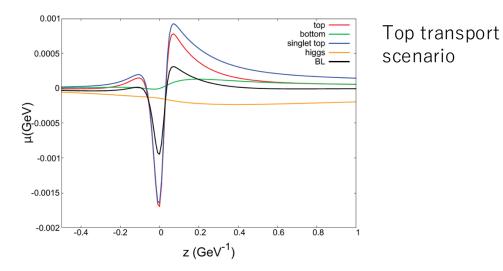
## Constraint from eEDM

$$H_{\rm EDM} = -d_f \frac{\vec{S}}{|\vec{S}|} \cdot \vec{E}$$

T violation if 
$$\neq 0 \rightleftharpoons CPV$$
 (CPT theorem)

Barr-Zee type diagrams




eEDM data can be satisfied by destructive interference of multiple CPV phsses

 $d_f = d_f(\text{fermion}) + d_f(\text{Higgs}) + d_f(\text{gauge})$ 

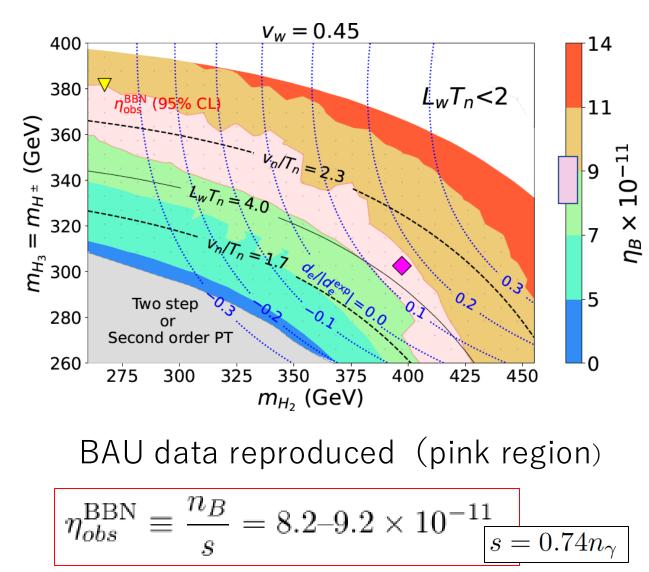
# Evaluation of BAU

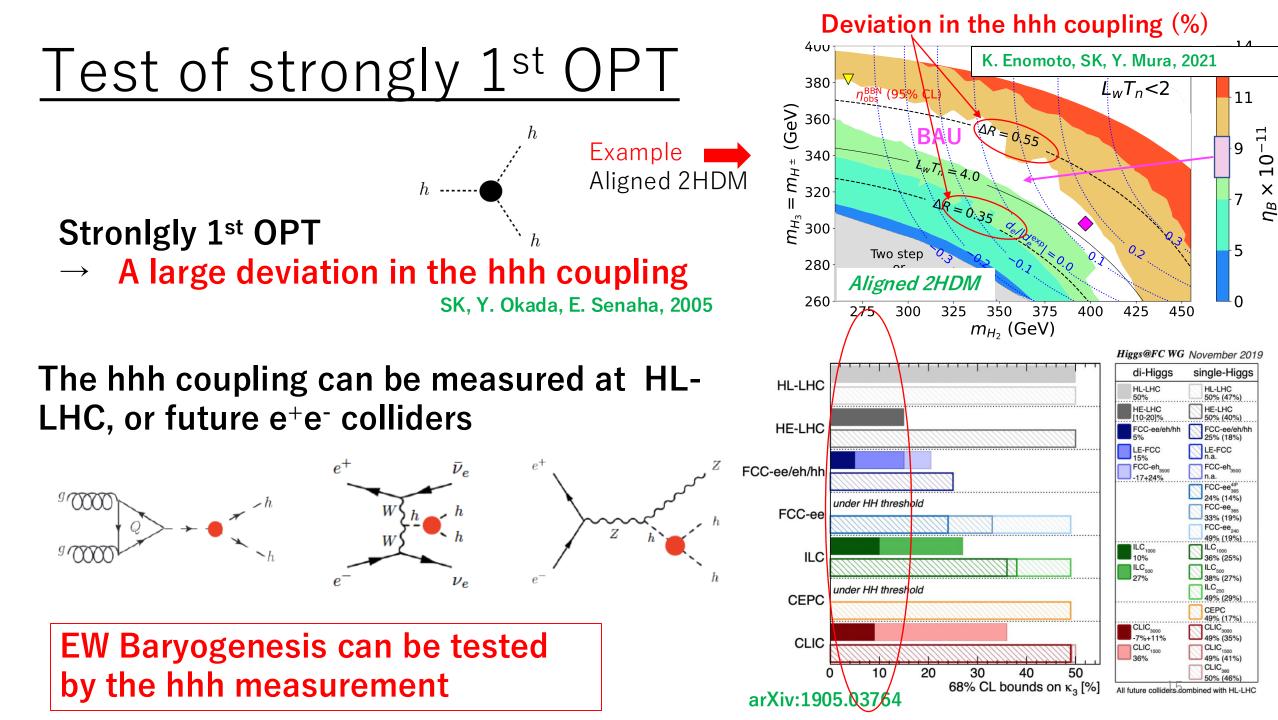
Aligned 2HDM

#### Chemical potential



In symmetric phase, B is produced by sphaleron


$$\eta_B = \frac{405\Gamma_{\rm sph}}{4\pi^2 v_w g_* T} \int_0^\infty dz \ \mu_{B_L} f_{\rm sph} e^{-45\Gamma_{\rm sph} z/(4v_w)}$$


Frozen at the Broken phase when  $v_{\rm n}/T_{\rm n}$  >1

Cline, Kainulainen, …

$$\begin{array}{ll} {\sf L}_{\sf w} & : \mbox{ wall width } & M = 30 \ {\rm GeV}, \ \ \lambda_2 = 0.1, \ \ |\lambda_7| = 0.8, \ \ \theta_7 = -0.9, \\ {\sf T}_{\sf n} & : \mbox{ nucleation } & |\zeta_u| = |\zeta_d| = |\zeta_e| = 0.18, \ \ \theta_u = \theta_d = -2.7, \ \ \delta_e = -0.04 \\ \end{array}$$

#### K. Enomoto, SK, Y. Mura, arXiv: 2207.00060





## Case of aligned 2HDM

GW spectrum for the benchmark points to reproduce BAU, which satisfy current constraints from collider, flavor and EDM data

 $10^{-9}$ 

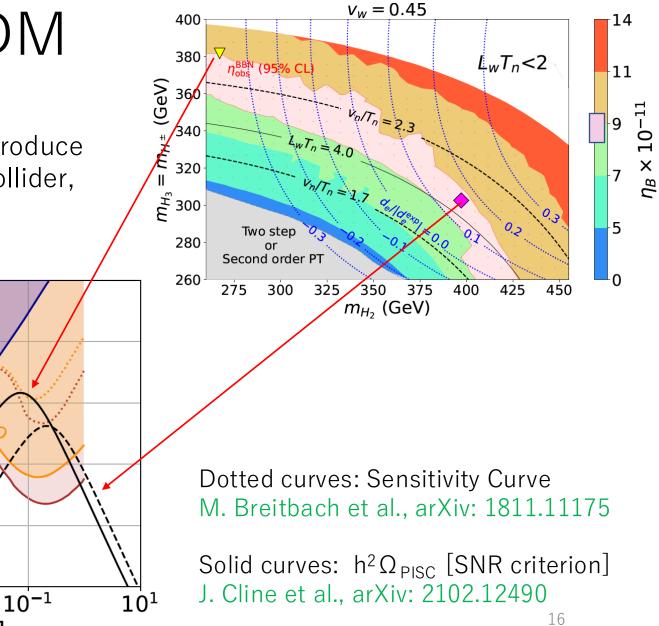
 $10^{-11}$ 

 $\overset{8}{_{0}} \overset{10^{-13}}{_{0}}$ 

 $10^{-17}$ 

 $10^{-19}$ 

10-5


BBO

BP1b

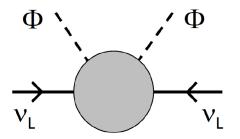
BP2b

 $10^{-3}$ 

*f* [Hz]

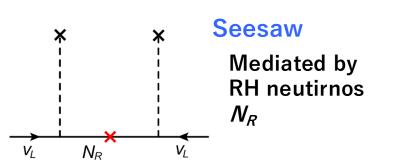


BP1 and BP2 may be tested by future GW experiments


### Neutrino mass, DM problem

# **Neutrino mass and Higgs**

Neutrino Oscillation  $\rightarrow$  Tiny mass ( < eV)


Majorana mass

$$\mathcal{L} = \frac{c}{\Lambda} (\phi \overline{\nu_L^c}) (\nu_L \phi)$$



#### **Seesaw Mechanism**

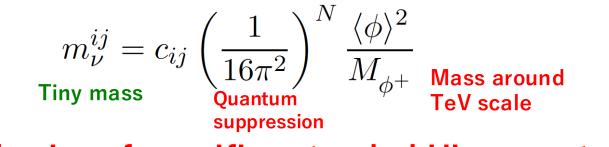
$$m_{\nu}^{ij} = y_i y_j \frac{\langle \phi \rangle^2}{M_R} \underset{\text{Right-handed}}{\leftarrow} \underset{\text{Neutrinos}}{\text{Large mass of}}$$



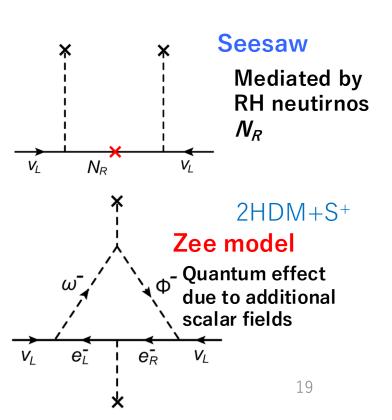
# **Neutrino mass and Higgs**

Neutrino Oscillation  $\rightarrow$  Tiny mass ( < eV)

Majorana mass


$$\mathcal{L} = \frac{c}{\Lambda} (\phi \overline{\nu_L^c}) (\nu_L \phi)$$

 $\xrightarrow{\Phi} \\ \xrightarrow{\nu_{L}} \\ \xrightarrow{$ 

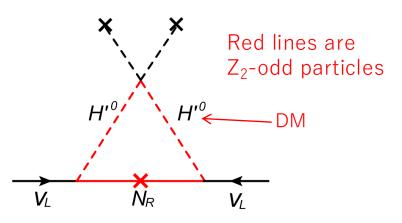

### Seesaw Mechanism

$$m_{\nu}^{ij} = y_i y_j \frac{\langle \phi \rangle^2}{M_R} \underset{\text{Right-handed}}{\leftarrow} \underset{\text{Neutrinos}}{\text{Large mass of}}$$

Alternative Scenario by quantum effects



**Physics of specific extended Higgs sectors** 




# Models of neutrino mass with DM

### Introducing a discrete Z<sub>2</sub>

- Stability of new particle (DM)
- Loop induced masses

Ma modelMa, 2006SM+ H' + NR1-loop induced v -massDark matter candidate [ H' ]



## **Recent discovery**

Same model Same motivation Same results

REVIEW D

VOLUME 54, NUMBER 9

#### Radiative seesaw mechanism at the weak scale

Zhijian Tao Theory Division, Institute of High Energy Physics, Academia Sinica, Beijing 100039, China (Received 2 May 1996)

We investigate an alternative seesaw mechanism for neutrino mass generation. The neutrino mass is generated at the loop level but the basic concept of the usual seesaw mechanism is kept. One simple model is constructed to show how this mechanism is realized. The applications of this seesaw mechanism at weak scale to cosmology and neutrino physics are discussed. [S0556-2821(96)02521-0]

PACS number(s): 14.60.St, 12.60.-i, 14.60.Pq

1996 Zhi-jian TaoCitation 0 before 20222006 Earnest MaCitation > 1500

We shoud call this model Tao-Ma model instead of Ma model

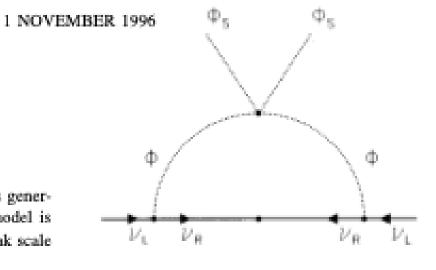
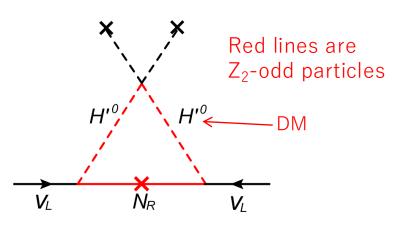



FIG. 1. The one-loop diagram for light neutrino mass generation.

zero mass, but obviously this mass is generated only at loop level, see Fig. 1. If the masses of  $\Phi$  and  $\nu_R$  are at the same order of the magnitude  $M_R$ , the light neutrino mass can be estimated as, up to a logarithmic factor,


$$m_{\nu} \simeq \frac{\lambda}{16\pi^2} g^T M_R^{-1} g V^2$$
, (4)

# Models of neutrino mass with DM

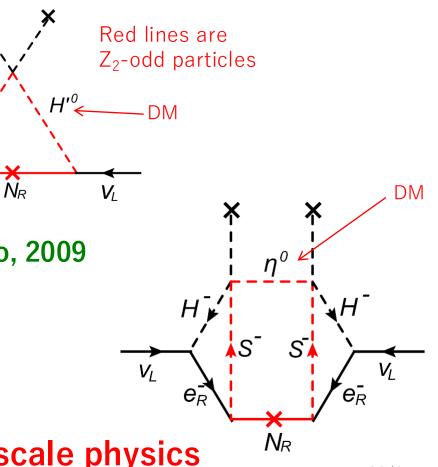
### Introducing a discrete Z<sub>2</sub>

- Stability of new particle (DM)
- Loop induced masses

Tao-Ma modelTao 1996, Ma, 2006SM+ H' + NR1-loop induced v -massDark matter candidate [ H' ]



# Models of neutrino mass with DM


 $V_l$ 

### Introducing a discrete Z<sub>2</sub>

- Stability of new particle (DM)
- Loop induced masses

Tao-Ma modelTao 1996, Ma, 2006SM+ H' + NR1-loop inducedV -massDark matter candidate [ H' ]

Model with higher loop effectsAoki, SK, Seto, 2009 $2HDM + \eta^0 + S^+ + N_R$  $\nu$  -masses are 3-loop induced $\nu$  -masses are 3-loop induced $\mu_L$ DM candidate [ $\eta^0$ ] $\nu_L$ EW Baryogenesis possible (CPV, 1stOPT)3 Problems can be explained by the TeV scale physics

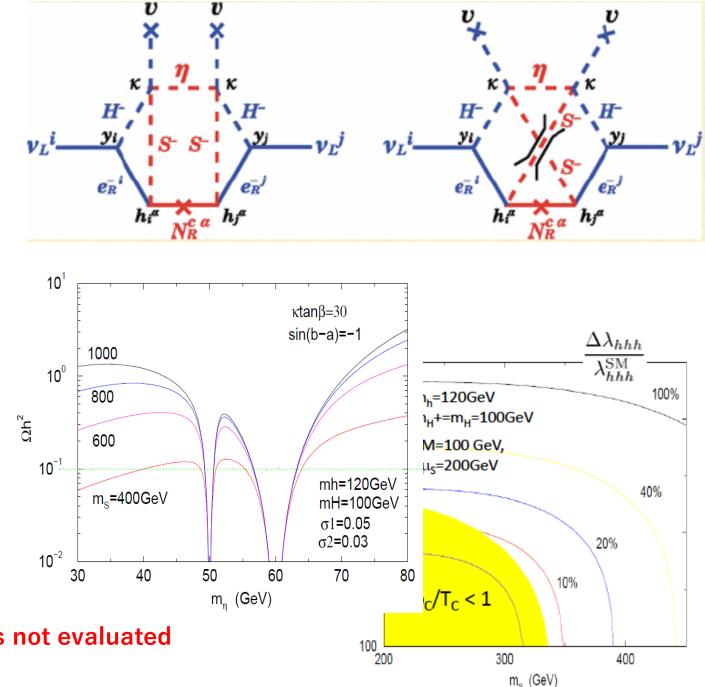


### AKS2009 (The model discussed today)

# Model (AKS2009)

M. Aoki, SK, O. Seto, PRL102, 051805 (2009)

|            | Scalar   |       |        | Fermion         |
|------------|----------|-------|--------|-----------------|
| New Fields | $\Phi_2$ | $S^+$ | $\eta$ | N <sub>aR</sub> |
| $SU(2)_L$  | 2        | 1     | 1      | 1               |
| $U(1)_Y$   | +1/2     | +1    | 0      | 0               |
| $Z_2$      | +        | 1     | -      | —               |


#### 2HDM (Type X) + $Z_2$ -odd scalars and RN

Neutrino mass at three loop (smallness can be explained from TeV physics)

Dark Matter candidate with the mass mH/2

Strongly 1<sup>st</sup> OPT can be realized (EWBG)

However, CPV was not analyzed, and BAU was not evaluated



## Recent Development of the model

M. Aoki, K. Enomoto, SK, PRD107 (2023)11, 115022

**2HDM(Type X)** ⇒ general but **Aligned 2HDM** 

 $\lambda_6 = 0$  (Higgs alignment) FCNC avoided by Yukawa alignment (Pich, Zuzon) CPV phases in the Higgs potential and the Yukawa interactions

All current constraints from experimental data satisfied

Neutrino oscillation, DM data, LEP, LHC, EDM, LFV, B, …. BAU was evaluated

A benchmark scenario is found, which explain Neutrino, DM and BAU

#### **Experimental constraints**

 $H^{\pm}$ : (Direct)  $H^{\pm} \rightarrow tb$  ATLAS (2021) (Flavor)  $B_d \rightarrow \mu^+ \mu^-$  J. Haller, et al EPJC (2018)

 $H_{2,3}$  : (Direct)  $H_{2,3} 
ightarrow au ar{ au}$  ATLAS (2020)

 $H_{2,3} \rightarrow t\bar{t}$  <u>ATLAS (2018)</u>

- $S^{\pm}$ : (Direct)  $S^{\pm} \to H^{\pm}\eta \to tb\eta$  (from  $Z^*, \gamma^* \to S^+S^-$ ) Weak constraints (Flavor) Lepton flavor violating processes (Next slides)
- $N_R^{\alpha}$ : (Direct) too heavy and weak constraints ( $m_{N^{\alpha}} = 3-4$  TeV) (Flavor) Lepton flavor violating processes (Next slides)
- $\eta$  : Dark matter in the model

(DM searches) 3 Pages later

CP-violating phases : (EDM) 2 Pages later

We checked that all of these constraints can be avoided in the BS

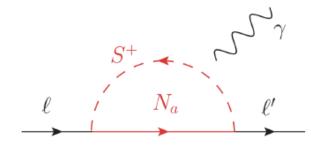
#### Benchmark scenario (BS) Aoki, Enomoto, SK (2022)

Masses of New particle

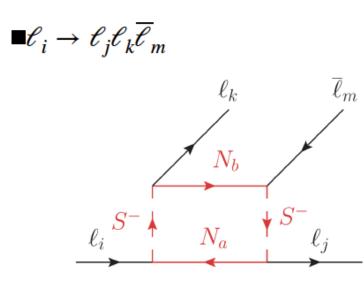
$$\begin{split} & Z_2 \text{ even:} \quad m_{H^+} = 250 \text{ GeV}, \quad m_{H_2} = 420 \text{ GeV}, \quad m_{H_3} = 250 \text{ GeV} \\ & Z_2 \text{ odd:} \quad m_S = 400 \text{ GeV}, \quad m_\eta = 63 \text{ GeV} \\ & (m_{N_1}, \, m_{N_2}, \, m_{N_3}) = (3000, \, 3500, \, 4000) \text{ GeV} \end{split}$$

Scalar couplings

$$\begin{split} \mu_2^2 &= (50 \text{ GeV})^2, \quad \mu_s^2 = (320 \text{ GeV})^2, \qquad \mu_{12}^2 = 0 \\ \lambda_2 &= 0.1, \quad \lambda_3 \simeq 1.98, \quad \lambda_4 \simeq 1.88, \quad \lambda_5 \simeq 1.88, \quad \lambda_6 = 0, \quad |\lambda_7| = 0.82, \\ \rho_1 &\simeq 1.90, \quad \sigma_1 = |\sigma_{12}| = 1.1 \times 10^{-3}, \quad \kappa = 2.0, \quad \theta_7 = -0.73, \quad \cdots \end{split}$$


#### **New Yukawa interactions**

$$\begin{split} y_t |\zeta_u| &= 0.17, \quad y_b |\zeta_d| = 4.2 \times 10^{-3}, \quad y_e |\zeta_e| = y_\mu |\zeta_\mu| = 2.5 \times 10^{-4}, \\ y_\tau |\zeta_\tau| - 2.5 \times 10^{-3}, \quad \theta_e = \theta_\mu = \theta_\tau = -2.94, \quad \theta_u = \theta_d = 0.245 \\ h_i^{\alpha} &\simeq \begin{pmatrix} 1.0 \ e^{-0.31i} & 0.2 \ e^{0.30i} & 1.0 \ e^{-2.4i} \\ 1.1 \ e^{-1.9i} & 0.21 \ e^{-1.8i} & 1.1 \ e^{2.3i} \\ 0.45 \ e^{2.7i} & 1.3 \ e^{-0.033i} & 0.10 \ e^{0.63i} \end{pmatrix}, \quad \cdots \end{split}$$

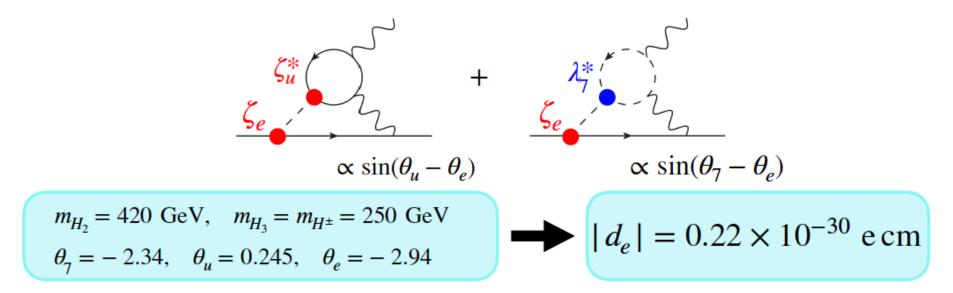

### Lepton flavor violation

| $\begin{split} m_S &= 400 \text{ GeV}, \\ M_N &= \{3000, 3500, 4000\} \text{ GeV} \end{split} \qquad h_i^{\alpha} \simeq \begin{pmatrix} 1.0 \ e^{-0.31i} & 0.2 \ e^{0.30i} & 1.0 \ e^{-2.4i} \\ 1.1 \ e^{-1.9i} & 0.21 \ e^{-1.8i} & 1.1 \ e^{2.3i} \\ 0.45 \ e^{2.7i} & 1.3 \ e^{-0.033i} & 0.10 \ e^{0.63i} \end{pmatrix} \end{split}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

 $\blacksquare \ell \to \ell' \gamma$ 

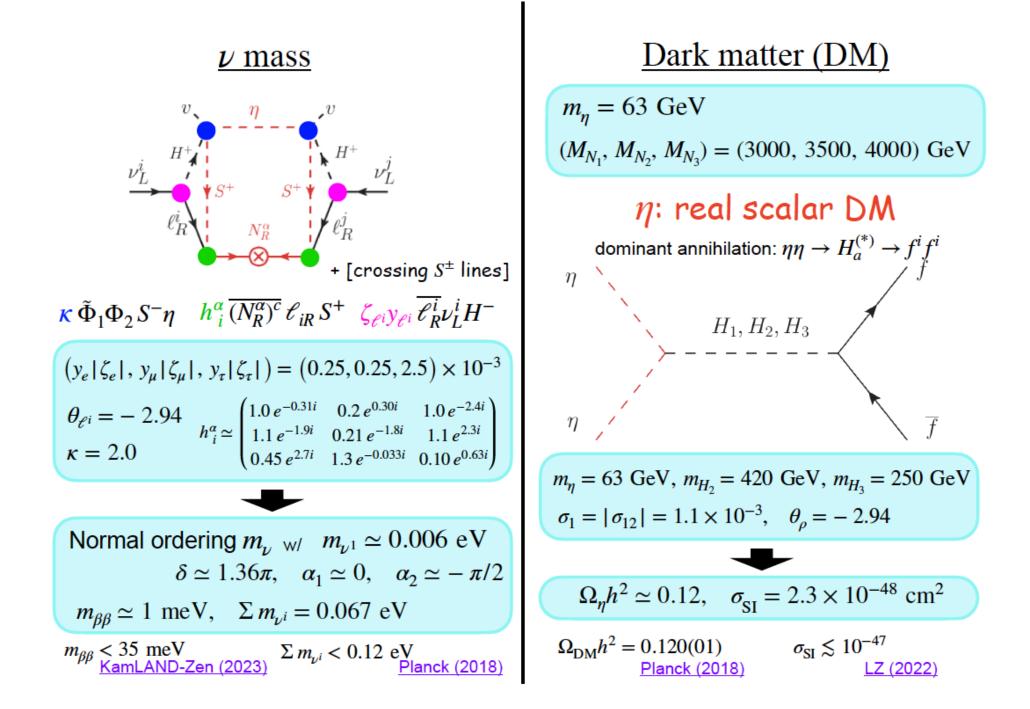


| Processes                    | $\operatorname{BR}$   | Upper limits          |
|------------------------------|-----------------------|-----------------------|
| $\mu  ightarrow e\gamma$     | $1.4 \times 10^{-14}$ | $4.2 \times 10^{-13}$ |
| $\tau \to e \gamma$          | $5.3 	imes 10^{-10}$  | $3.3 	imes 10^{-8}$   |
| $\tau  ightarrow \mu \gamma$ | $1.1 \times 10^{-11}$ | $4.4 \times 10^{-8}$  |




| Processes                       | BR                    | Upper limits         |  |
|---------------------------------|-----------------------|----------------------|--|
| $\mu  ightarrow 3e$             | $1.0	imes10^{-13}$    | $1.0 	imes 10^{-12}$ |  |
| $\tau \rightarrow 3e$           | $6.2 \times 10^{-10}$ | $2.7 \times 10^{-8}$ |  |
| $	au 	o 3\mu$                   | $2.4\times10^{-11}$   | $2.1 \times 10^{-8}$ |  |
| $	au 	o e\mu\overline{e}$       | $5.1 \times 10^{-12}$ | $1.8 \times 10^{-8}$ |  |
| $\tau \to \mu \mu \overline{e}$ | $1.1 \times 10^{-12}$ | $1.7 \times 10^{-8}$ |  |
| $\tau \to e e \overline{\mu}$   | $4.5 \times 10^{-13}$ | $1.5 	imes 10^{-8}$  |  |
| $\tau \to e \mu \overline{\mu}$ | $9.6 	imes 10^{-11}$  | $2.7 \times 10^{-8}$ |  |

#### Electric dipole moment (EDM)


electron EDM (eEDM)  $|d_e| < 4.0 \times 10^{-30}$  e cm Roussy, et al (2022)

eEDM can be small by destructive interference SK, Kubota, Yagyu (2020)



**neutron EDM (nEDM)**  $|d_n| < 1.8 \times 10^{-26}$  e cm

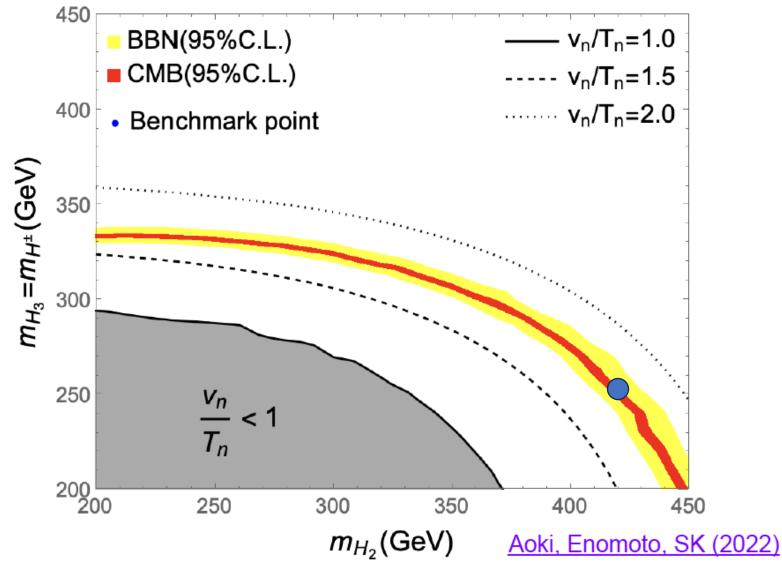
chromo EDM Barr, Zee (1990) Weinberg ope. Weinberg (1989) 4 fermi interaction Khatsimovsky, Khriplovich, Yelkhovsky (1988)



#### Electroweak baryogenesis (EWBG)

#### The Sakharov conditions <u>Sakharov (1967)</u>

| 1. <i>B</i> -violation                                     | <br>Sphaleron transition                                                          |
|------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>2</b> . <i>C</i> and <i>CP</i> violation                | <br>CPV phases : $\lambda_7,  ho_{12}, \sigma_{12}, \zeta_u, \zeta_d, \zeta_\ell$ |
| <ol> <li>Departure from<br/>thermal equilibrium</li> </ol> | <br>Strongly 1st order electroweak phase transition                               |


**Strongly 1st EWPT** (EWPT = ElectroWeak Phase Transition)

Non-decoupling effect by 
$$H_{2,3}$$
,  $H^{\pm}$ ,  $S^{\pm}$   
 $m_{H^+}^2 = \mu_2^2 + \frac{1}{2}\lambda_3 v^2$ ,  $m_{H_{2,3}}^2 = \mu_2^2 + \frac{1}{2}(\lambda_3 + \lambda_4 \pm \lambda_5)v^2$ ,  $m_S^2 = \mu_S^2 + \frac{1}{2}\rho_1 v^2$   
 $m_{H^+} = 250 \text{ GeV}$ ,  $m_{H_2} = 420 \text{ GeV}$ ,  $m_{H_3} = 250 \text{ GeV}$ ,  $m_S = 400 \text{ GeV}$   
 $\lambda_3 \simeq 1.98$ ,  $\lambda_4 \simeq 1.88$ ,  $\lambda_5 \simeq 1.88$ ,  $\rho_1 \simeq 1.90$ 

We evaluated one-loop effective potential in Landau gauge Coleman, Weinberg (1973) Dolan, Jackiw (1974)

$$(T = 0) \frac{\text{Kanemura, et al (2003) Kanemura, et al (2004)}}{\Delta R \equiv \lambda_{hhh} / \lambda_{hhh}^{SM} - 1 = 38 \%} \qquad (T \neq 0) \text{ thermal resummation } \frac{\text{Parwani (1992)}}{v_n / T_n = 1.74 > 1}$$

Electroweak baryogenesis



Other parameters are the same with those in the BS

### Get back to the original model AKS2009

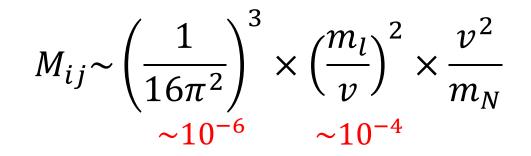
FCNC by softly broken Z2 Smaller number if parameters

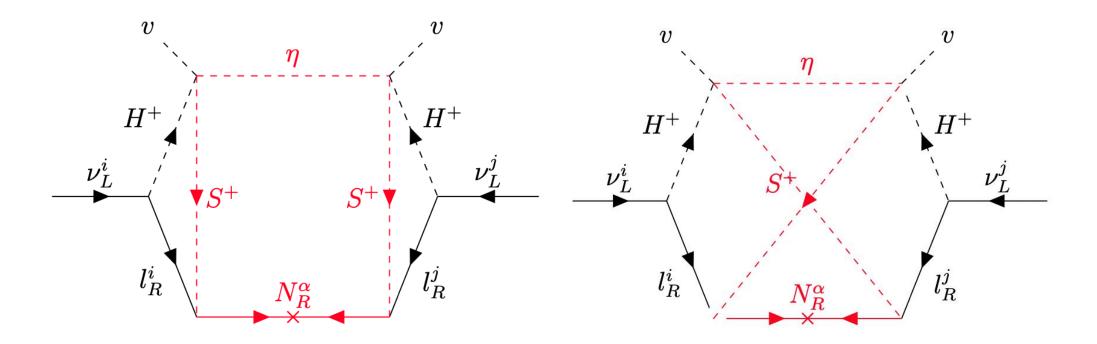
M. Aoki, K. Enomoto, SK, S. Taniguchi 2024

| Particle content                                                          |                                |           |           |          |       |                               |
|---------------------------------------------------------------------------|--------------------------------|-----------|-----------|----------|-------|-------------------------------|
| Type-X 2HDM + new Z2 odd (N <sup>α</sup> <sub>R</sub> ,S <sup>±</sup> ,η) |                                |           |           |          |       |                               |
|                                                                           |                                | $SU(3)_c$ | $SU(2)_L$ | $U(1)_Y$ | $Z_2$ | $\tilde{Z}_2$ (Softly broken) |
|                                                                           | $Q^i$                          | 3         | 2         | 1/6      | +     | +                             |
|                                                                           | $u_R^i$                        | 3         | 1         | 2/3      | +     | _                             |
| i = 1,2,3                                                                 | $\frac{\overline{d_R^i}}{L^i}$ | 3         | 1         | -1/3     | +     | _                             |
|                                                                           | $L^i$                          | 1         | 2         | -1/2     | +     | +                             |
|                                                                           | $l_R^i$                        | 1         | 1         | -1       | +     | +                             |
|                                                                           | $\phi_1$                       | 1         | 2         | 1/2      | +     | +                             |
|                                                                           | $\phi_2$                       | 1         | 2         | 1/2      | +     | _                             |
| $\alpha = 1,2,3$                                                          | $N_R^{lpha}$                   | 1         | 1         | 0        | _     | +                             |
|                                                                           | $S^+$                          | 1         | 1         | 1        |       | +                             |
|                                                                           | $\eta$                         | 1         | 1         | 0        |       | +                             |
| Dark                                                                      | matter o                       | andidate  |           |          |       |                               |

### Lagrangian

Stationary condition


Type-X 2HDM + new Z2 odd (
$$N_R^{\alpha}$$
,  $S^{\pm}$ , η)  
Im  $[\mu_{12}^2] - \frac{1}{2}$  Im  $[\lambda_5]v_1v_2 = 0$   
 $\mu_{12}^2$  and  $\lambda_5$  are related  
Higgs potential  
 $V = -\mu_1^2 |\phi_1|^2 - \mu_2^2 |\phi_2|^2 - (\mu_{12}^2 \phi_1^{\dagger} \phi_2 + h.c.) + \mu_S^2 |S^+|^2 + \frac{\mu_{\eta}^2}{2} \eta^2 + \frac{\lambda_1}{2} |\phi_1|^4 + \frac{\lambda_2}{2} |\phi_2|^4$   
 $+ \lambda_3 |\phi_1|^2 |\phi_2|^2 + \lambda_4 |\phi_1^{\dagger} \phi_2|^2 + (\frac{\lambda_5}{2} (\phi_1^{\dagger} \phi_2)^2 + h.c.) + \frac{\lambda_S}{4} |S^+|^4 + \frac{\lambda_{\eta}}{4!} \eta^4 + \frac{\xi}{2} |S^+|^2 \eta^2$   
 $CP$  violating phase  $\theta_5$  ( $\lambda_5 = |\lambda_5|e^{i\theta_5}$ )  
 $+ \sum_{a=1}^2 (\rho_a |\phi_a|^2 |S^+|^2 + \frac{1}{2} \sigma_a |\phi_a|^2 \eta^2) + (2\mathbb{E} \tilde{\phi}_1^{\dagger} \phi_2 S^- \eta + h.c.)$   
The phase of  $\kappa$  can be 0 by rephasing S<sup>-</sup>


Only  $\theta_5$  in the Higgs potential

Additional Yukawa coupling with RHN

$$\mathcal{L} \supset -h_i^{\alpha} \overline{(N_R^{\alpha})^c} l_R^i S^+ + \text{h.c.} \qquad \alpha = 1,2,3, \qquad i = 1,2,3, \qquad h_i^{\alpha} \text{are } 3 \times 3 \text{ matrix}$$
CPV

### Neutrino mass





Three loop effects  $\rightarrow$  Natural  $h_e^{\alpha} \sim O(1)$  and  $m_N \sim O(1)$  TeV

### Benchmark scenarios

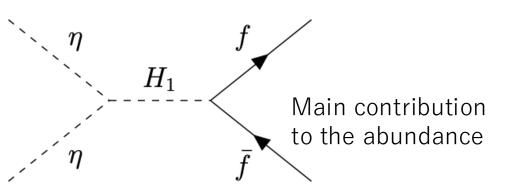
DM Abundance DM Directsearch Ex Neutirno Data

### BAU

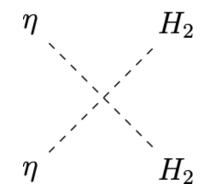
#### LEP

LHC (ALTAS, CMS)

Electron EDM, neutron EDM


Various LFV experiment

### Explore a benchmark point which satisfy every thing


## Benchmark scenarios

Two benchimark scenario (Neutrino mass is assumed normal order )

Scenario 1(resonant)



### Scenario 2(heavy WIMP)



Main contribution to the abundance

$$\begin{split} m_{H^1} &\simeq 125 \text{ GeV}, \ m_{H^2} \simeq 224 \text{ GeV}, \ m_{H^3} \simeq 391 \text{ GeV} \\ m_{H^{\pm}} &\simeq 391 \text{ GeV}, \ m_S = 325 \text{ GeV}, \ m_{\eta} = 63 \text{ GeV} \\ (m_{N^1}, m_{N^2}, m_{N^3}) &= (2500, 3000, 3500) \text{ GeV} \\ m_{\nu^1} &= 4.76 \text{ meV}, \ \kappa \tan \beta = 30, \tan \beta = 18, \\ \theta_5 &\simeq -0.990 \\ & \left( 2.9e^{0.96\pi i} - 0.010e^{0.39\pi i} - 0.0024e^{-0.072\pi i} \right) \end{split}$$

|                       | 2.9e <sup>0.50</sup>  | $0.010e^{0.55m}$             | $0.0024e^{-0.072m}$                                  | ١ |
|-----------------------|-----------------------|------------------------------|------------------------------------------------------|---|
| $h_i^{\alpha} \simeq$ | $2.3e^{-0.44\pi i}$   | $0.019e^{-0.93\pi i}$        | $\frac{0.0024e^{-0.072\pi i}}{0.0021e^{-0.73\pi i}}$ |   |
|                       | $(2.0e^{-0.48\pi i})$ | $0.054e^{-0.029\pi i}$       | 0.0022e <sup>-0.083πi</sup> /                        | / |
|                       | •                     | ) <sup>-31</sup> ecm < 4.1 > |                                                      |   |
|                       |                       | $\Omega h^2 \simeq 0.12$     |                                                      |   |

$$\begin{split} m_{H^1} &\simeq 125 \; {\rm GeV}, \, m_{H^2} \simeq 224 \; {\rm GeV}, \, m_{H^3} \simeq 391 \; {\rm GeV} \\ m_{H^\pm} &\simeq 391 \; {\rm GeV}, \, m_S = 325 \; {\rm GeV}, \, m_\eta = 250 \; {\rm GeV} \\ (m_{N^1}, \, m_{N^2}, \, m_{N^3}) &= (2500, 3000, 3500) \; {\rm GeV} \\ m_{\nu^1} &= 7.17 \; {\rm meV}, \, \kappa \tan\beta = 30, \tan\beta = 18, \theta_5 \simeq -0.999 \\ h_i^\alpha &\simeq \begin{pmatrix} 2.7e^{0.96\pi i} & 0.014e^{-0.22\pi i} & 0.0016e^{-0.85\pi i} \\ 2.8e^{0.66\pi i} & 0.044e^{0.76\pi i} & 0.0017e^{-0.91\pi i} \\ 2.6e^{-0.10\pi i} & 0.059e^{-0.88\pi i} & 0.0021e^{0.97\pi i} \end{pmatrix} \end{split}$$

 $\begin{aligned} |d_e| \simeq 1 \times 10^{-30} \ \text{ecm} < 4.1 \times 10^{-30} \ \text{ecm} \\ \Omega h^2 \simeq 0.12 \end{aligned}$ 

### Dark matter direct detection


$$V : \supset + \sum_{a=1}^{2} \left( \rho_{a} |\phi_{a}|^{2} |S^{+}|^{2} + \frac{1}{2} \sigma_{a} |\phi_{a}|^{2} \eta^{2} \right)$$
  
DM-Higgs interaction

 $\eta$  : dark matter

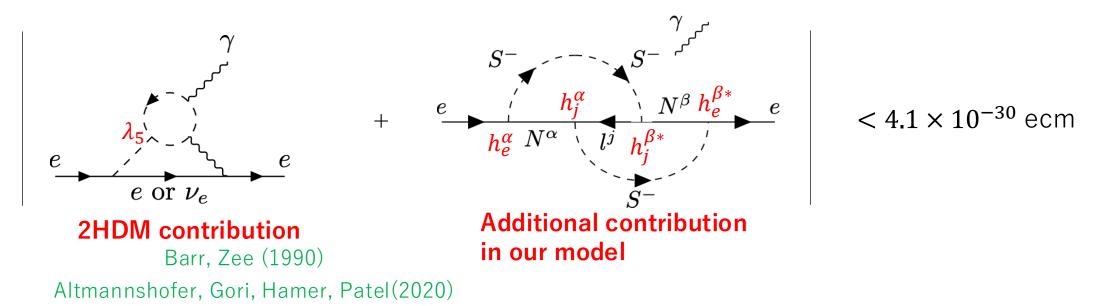
The process  $\eta N \rightarrow \eta N$  depens on  $(\sigma_1 \cos \beta + \sigma_2 \sin \beta)$  and  $m_\eta$ 

For large  $\tan \beta$ ,  $(\sigma_1 \cos \beta + \sigma_2 \sin \beta) \simeq \sigma_2$ Direct detection does not depend on  $\sigma_1$ 

$$\rightarrow \sigma_2 = 1.1 \times 10^{-3}$$



K. Enomoto, S.Kanemura, ST (2024)


## Electric dipole moment in our model

In the model AKS, new contributions from

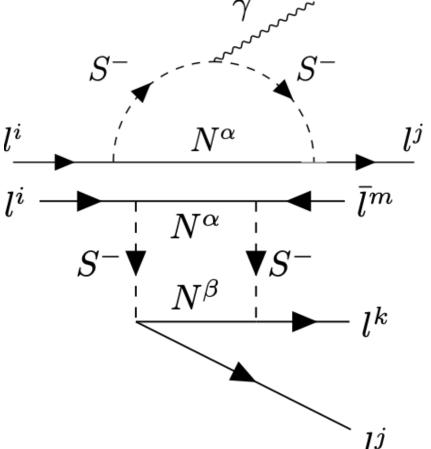
$$\mathcal{L} \supset -h_i^{lpha} \overline{(N_R^{lpha})^c} l_R^i S^+ + ext{h.c.}$$

appear.

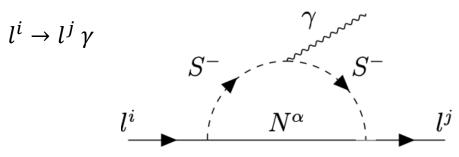
By destructive interference Electron EDM can satisfy electron EDM



# Lepton flavor violation(LFV)


$$\begin{array}{ll} Br(\mu \rightarrow e\gamma) < 3.1 \times 10^{-13} & \mbox{Afanaciev et al. MEG-II (2023)} \\ Br(\mu \rightarrow 3e) < 1.0 \times 10^{-12} & \mbox{Perez et al. Mu3e (2023)} \\ & \hdots \end{array}$$

In the model,


$$\mathcal{L} \supset -h_i^{\alpha} \overline{(N_R^{\alpha})^c} l_R^i S^+ + \text{h.c.}$$
$$\mathcal{L} \supset -h_i^{\alpha} \overline{(N_R^{\alpha})^c} l_R^i S^+ + \text{h.c.}$$

causes LFV processes.

 $\rightarrow$  LFV can test the model



## Constaraints from lepton flavor violation



• Scenario 1(Resonant)

| $l^i \to l^j \ l^k \ \overline{l}^m$ | $S^- \bigvee \stackrel{N^{lpha}}{\overset{N^{eta}}{}{}} \bigvee S$ | 3        |
|--------------------------------------|--------------------------------------------------------------------|----------|
|                                      |                                                                    | <b>⊢</b> |

11

• Scenario 2( Heavy WIMP)

|                                | Prediction             | Exp. bounds           |
|--------------------------------|------------------------|-----------------------|
| $\mu  ightarrow e \gamma$      | $2.95 \times 10^{-14}$ | $3.1 \times 10^{-13}$ |
| $	au 	o e\gamma$               | $4.73 \times 10^{-15}$ | $3.3 \times 10^{-8}$  |
| $	au 	o \mu \gamma$            | $2.49 \times 10^{-18}$ | $4.4 \times 10^{-8}$  |
| $\mu \rightarrow 3e$           | $4.68 \times 10^{-13}$ | $1.0 \times 10^{-12}$ |
| $\tau \rightarrow 3e$          | $4.84 \times 10^{-10}$ | $2.7 \times 10^{-8}$  |
| $\tau \rightarrow 3\mu$        | $4.88 \times 10^{-20}$ | $2.1 \times 10^{-8}$  |
| $	au 	o e \mu ar e$            | $1.14 \times 10^{-16}$ | $1.8 \times 10^{-8}$  |
| $	au 	o \mu \mu ar{e}$         | $5.77 \times 10^{-17}$ | $1.7 \times 10^{-8}$  |
| $\tau \rightarrow e e \bar{e}$ | $1.46 \times 10^{-13}$ | $1.5 \times 10^{-8}$  |
| $	au 	o e \mu ar \mu$          | $1.14 \times 10^{-16}$ | $2.7 \times 10^{-8}$  |

|                                | Prediction             | Exp. bounds           |              |
|--------------------------------|------------------------|-----------------------|--------------|
| $\mu  ightarrow e \gamma$      | $5.08 \times 10^{-14}$ | $3.1 \times 10^{-13}$ | MEG-II(2024) |
| $	au  ightarrow e\gamma$       | $1.56 \times 10^{-15}$ | $3.3 \times 10^{-8}$  | BaBar(2010)  |
| $	au 	o \mu \gamma$            | $1.33 \times 10^{-18}$ | $4.4 \times 10^{-8}$  | BaBar(2010)  |
| $\mu \rightarrow 3e$           | $2.79 \times 10^{-13}$ | $1.0 \times 10^{-12}$ | Mu3e(2023)   |
| $\tau \rightarrow 3e$          | $1.50 \times 10^{-10}$ | $2.7 \times 10^{-8}$  | BaBar(2010)  |
| $\tau \rightarrow 3\mu$        | $7.76 \times 10^{-20}$ | $2.1 \times 10^{-8}$  | Belle (2010) |
| $	au  ightarrow e \mu ar{e}$   | $1.60 \times 10^{-16}$ | $1.8 \times 10^{-8}$  | Belle (2010) |
| $	au 	o \mu \mu ar{e}$         | $2.62 \times 10^{-17}$ | $1.7 \times 10^{-8}$  | Belle (2010) |
| $\tau  ightarrow e e \bar{e}$  | $6.95 \times 10^{-13}$ | $1.5 \times 10^{-8}$  | Belle (2010) |
| $	au  ightarrow e \mu ar{\mu}$ | $1.60 \times 10^{-16}$ | $2.7 \times 10^{-8}$  | Belle (2010) |
|                                |                        |                       |              |

 $\bar{l}^m$ 

 $l^k$ 

Įĵ

NTO

K. Enomoto, S.Kanemura, ST (2024)

# Test of our benchmark scenario

|                           | Prediction<br>Scenario 1 | Prediction<br>Scenario 2 | Expected sensitivity |          |
|---------------------------|--------------------------|--------------------------|----------------------|----------|
| $\mu  ightarrow e \gamma$ | $2.95 \times 10^{-14}$   | $5.08 \times 10^{-14}$   | $6 \times 10^{-14}$  | MEG-II   |
| $\mu \rightarrow 3e$      | $4.68 \times 10^{-13}$   | $2.79 \times 10^{-13}$   | $1 \times 10^{-16}$  | Mu3e     |
| $\tau \rightarrow 3e$     | $4.84 \times 10^{-10}$   | $1.50 \times 10^{-10}$   | $4 \times 10^{-10}$  | Belle-II |

Future LFV experiments may confirm/exclude the model

### **Furue Electron EDM experiments**

ACME-III try to explore CPV by  $|d_e| < 10^{-30}$  ecm

- Scenario 1(resonant)  $|d_e| \simeq 3 \times 10^{-31} \text{ ecm}$
- Scenario 2(Heavy)  $|d_e| \simeq 1 \times 10^{-30} \text{ ecm}$

→Scenario 2 can be tested by ACME-III

#### How to test the BS

#### EDM measurements

One order improvement is expected in future ACME experiment ACME(2018)

#### Flavor experiments

- $B \to X_s \gamma$  or  $B_d^0 \to \mu^+ \mu^-$  in Belle-II experiments E. Kou, et al [Bell-II], arXiv:1808.10567 [hep-ex]
- CP violation in  $B \to X_s \gamma (\Delta A_{CP})$  Benz, Lee, Neubert, Paz (2011); Watanuki et al [Belle] (2019)
- Lepton flavor violating decays  $\mu \to e\gamma$  MEG-II  $\mu \to 3e$ ,  $\tau \to 3e$  Belle-II

#### Collider experiments

- $\blacksquare gg \to H_2, H_3; gg \to H^{\pm}tb; q\overline{q} \to H_2 {}_3H^{\pm}$
- $\blacksquare \ a\overline{a} \to S^+S^-: \ e^+e^- \to S^+S^-: \ e^+e^- \to NN$

Aiko, SK, Kikuchi, Mawatari, Sakurai, Yagyu (2021); SK, Takeuchi, Yaqyu (2021)

M. Aoki, SK, O. Seto (2009)

■ Higgs triple coupling  $\Delta R = \frac{\Delta \lambda_{hhh}}{\lambda_{hhh}^{SM}} = 38 \%$ Sensitivity @ ILC ( $\sqrt{s} = 500 \text{ GeV}$ )  $\Delta R = 27 \%$  K. Fujii, et al. arXiv:1506.05992 [hep-ph]

■ Azimuthal angle distribution of  $H_{2,3} \rightarrow \tau \overline{\tau}$  at  $e^+e^-$  collider

#### Dark matter direct detection

Observation of gravitational waves

SK, M. Kubota, K. Yagyu, JHEP (2021)

The detailed study is a work in progress.

# UV theory?

What is the world above Landau Pole?

Why so various scalar fields appear at low energy?

SK, T. Shindo, T. Yamada 2014

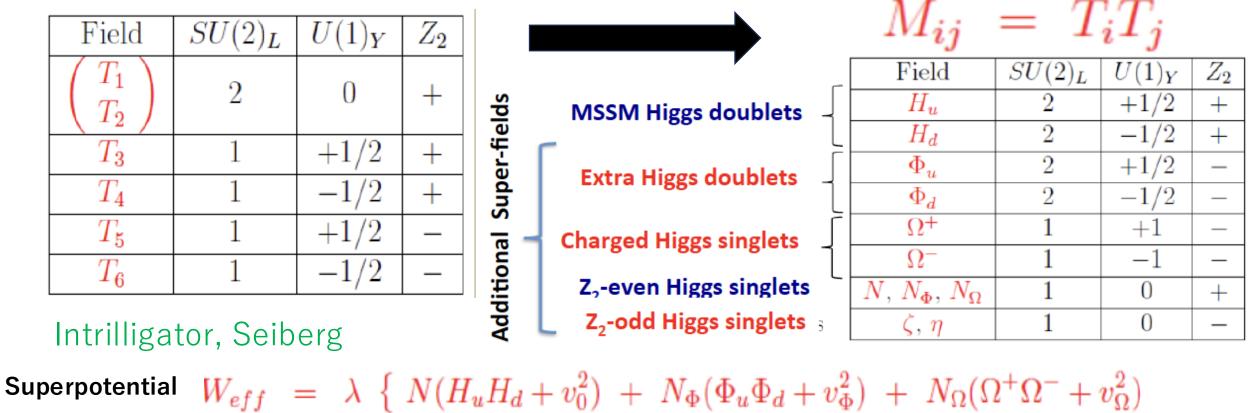
### How about the UV theory?

The model (AKS2009) can satisfy all experimental results, and explain Neutrino, Dark Matter, Baryogenesis by TeV scale physics

1<sup>st</sup> OPT. → Landau Pole  $\Lambda$  at 10-100TeV

What is the world above  $\Lambda$ ?

Higgs as mesons


 $M_{ij} = T_i T_j$ 

An idea: New gage theory with confinement. Higgs is a realization as a meson formed by the fundamental representation Landau pole and new physics



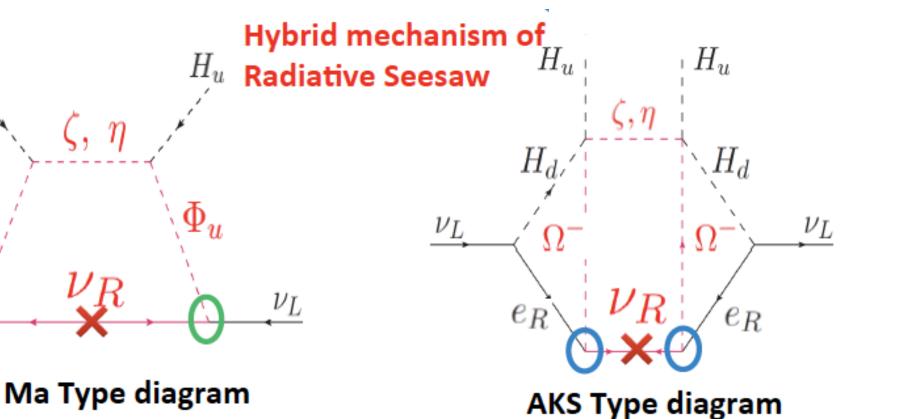
Minimal model for confinement (Nc=2, N<sub>f</sub>=3)  $\rightarrow$  3 pairs of SU(2)<sub>H</sub> fundamental rep. T<sub>i</sub> (i=1-6)

SU(2)H gauge theory



 $- NN_{\Phi}N_{\Omega} - N_{\Omega}\zeta\eta + \zeta H_{d}\Phi_{u} + \eta H_{u}\Phi_{d} - \Omega^{+}H_{d}\Phi_{d} - \Omega^{-}H_{u}\Phi_{u} \}$ 

### The low energy theory is 4HDM+Singlets but with a common $\lambda$ !


SK, Shindou, Yamada 2014

**Higgs as Meson** 

#### SK, Shindou, Yamada 2014

 $W_{\text{eff}}^N = \frac{\kappa}{2} N \nu_R^c \nu_R^c + \left( y_N^i \right) \nu_R^c L_i \Phi_u + \left( h_N^i \nu_R E_i^c \Omega^- + \frac{M}{2} \nu_R^c \iota \right)$ 

 $\Phi_u$ 



All particle contents are prepared from the  $SU(2)_H$  gauge theory Multiplet structure may also be explained by the UV theory

# Summary

- Higgs sector remains to be determined yet.
- Extended Higgs sector is used to explain physics of Neutrino, Dark Matter, Baryogenesis.
- A model which can explain neutrino, DM, BAU is revisited (AKS2009), and BAU was evaluated.
- Discussed viable benchmark scenarios
- The model is testable using various future experiments
- To consider the UV structure of the model is interesting

### HPNP2025

Higgs as a Probe of New Physics 2025

9 -13 June, 2025

Nambu Yoichiro Hall The University of OSAKA Japan



Your participation is welcome!

Announcement will come soon!



### Expo 2025 in Osaka

