GRAVITATIONAL SIGNATURES OF SUPERCOOLING IN CONFORMAL HEAVY SINGLET HIGGS EXTENSIONS OF THE STANDARD MODEL

ANTÓNIO PESTANA MORAIS

DEPARTAMENTO DE FÍSICA DA UNIVERSIDADE DE AVEIRO, CENTER FOR RESEARCH AND DEVELOPMENT IN MATHEMATICS AND APPLICATIONS (CIDMA)

Co-authors: João Gonçalves, Danny Marfatia, Roman Pasechnik

To appear in 2409:XXXX

Workshop on Multi Higgs Models - Instituto Superior Técnico, Lisboa - 6 September 2024

The SM is a tremendously successful theory that explains "boringly" well most its predictions!

However, it fails to...

- Explain neutrino masses
- Explain dark matter
- Explain CP violation and matter/anti-matter assymetry
- Explain the observed flavour structure Flavour puzzles
- Suffers from the Higgs mass hierarchy problem

The SM is a tremendously successful theory that explains "boringly" well most its predictions!

However, it fails to...

- Explain neutrino masses
- Explain dark matter

Extended Higgs sectors and new gauge symmetries can assist in solving these problems

- Explain CP violation and matter/anti-matter assymetry
- Explain the observed flavour structure Flavour puzzles
- Suffers from the Higgs mass hierarchy problem

LHC sensitive to new scalars from tenths of GeV up to few TeV

Scalar field	Decay channel	Mass limits (GeV)	Comments	References
\overline{A}	$A \to \tau^+ \tau^-$ $A \to \tau^+ \tau^- b\bar{b}$	[200, 2500] [200, 2500]	Limits given in terms of $\sigma \times BR$ Limits given in terms of $\sigma \times BR$	[8] [8]
	$H_1 \to AZ^0$	[0.5, 4.0]	Hadronic decays with $BR(A \rightarrow gg) = 1$ or $BR(A \rightarrow s\bar{s}) = 1$	[11]
	$AA \rightarrow b\bar{b}b\bar{b}$	[20, 60]	Limits given in terms of $\sigma \times BR$	[15]
	111 . 0000	[==, ==]	Associated Z ⁰ production	[55]
	$A \to H\mathbf{Z}^0$		Limits m_H vs m_A	[12]
			Multiple channels $2\ell 2b$, $2\ell 4j$, $2\ell 4b$	
	$A \rightarrow \gamma \gamma$	[160, 2800]	Limits given in terms of $\sigma \times BR$	[3]
H	$H o au^+ au^-$	[200, 2500]	Limits given in terms of $\sigma \times BR$	[8]
	$H ightarrow au^+ au^- b ar{b}$	[200, 2500]	Limits given in terms of $\sigma \times BR$	[8]
	$HH \rightarrow b\bar{b}b\bar{b}$	[260, 1000]	Vector-boson fusion	[6]
			Coupling constraints	
	$H \to VV$	[300, 3200] ggF	First two for Kaluza-Klein (KK) massive gravitons,	[4]
		[200 760] VDE	third for radion.	
		[300, 760] VBF [300, 2000] ggF	V indicates vector boson	
	$H \to Z^0 Z^0$	[400, 2000]	Various widths assumptions	[5]
			VBF and gluon fusion	
			Fully and semileptonic	
	$H o \gamma \gamma$	[160, 2800]	Limits given in terms of $\sigma \times BR$	[3]
	$H(H_1) \to AA$	[16, 62]	$H_1 \rightarrow AA \rightarrow b\bar{b}\mu^+\mu^-$	[16]
	(1/	[15, 60]	$H_1 \to AA \to \ell^+ \ell^- \ell^+ \ell^-$	[9]
		[3.6, 21]	$H(H_1) \rightarrow AA \rightarrow \mu^+\mu^-\tau^+\tau^-$	[10]
H^\pm	$pp \rightarrow tbH^+$	[200, 2000]	In both: $H^+ \to tb$	[17]
	PP - TOIL	[200, 3000]	Constraints of m_H^{\pm} vs tan β (both)	[18]
			Limits as $\sigma \times BR$ (both)	
	$H^{\pm} \rightarrow W^{\pm} Z^0$	[200, 1500]	Considers VBF production	[19]
	· ,, 		Limits as $\sigma \times BR$	£ + 3
	$H^{\pm} \rightarrow cs$	[80, 160]	Assumes $BR(H^{\pm} \rightarrow cs) = 1$	[7]
	11 . 00	[,]	Limits as BR $(t \to H^+ b)$ vs m_{H^+}	C- J

All references in: [2211:10109], P.M.Ferreira, J.Gonçalves, A.P.Morais, A.Onofre, R.Pasechnik, V.Vatellis

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2020

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ , γ	Jets†	Emiss	$\int \mathcal{L} dt [fb]$	·¹]	Limit		Reference
	SSM $Z' \to \ell \ell$	$2e, \mu$	-	_	139	Z' mass	5.1 TeV		1903.06248
	SSM $Z' \rightarrow \tau \tau$	2τ	_	_	36.1	Z' mass	2.42 TeV		1709.07242
SI	Leptophobic $Z' \rightarrow bb$	_	2 b	-	36.1	Z' mass	2.1 TeV		1805.09299
on	Leptophobic $Z' \rightarrow tt$	$0e, \mu$	≥ 1 b, ≥ 2 J	Yes	139	Z' mass	4.1 TeV	$\Gamma/m = 1.2\%$	2005.05138
OS	SSM $W' \to \ell \nu$	1 e, μ	_	Yes	139	W' mass	6.0 TeV		1906.05609
P	SSM $W' \rightarrow \tau \nu$	1 $ au$	-	Yes	36.1	W' mass	3.7 TeV		1801.06992
ge	HVT $W' \rightarrow WZ \rightarrow \ell \nu qq \text{ model B}$	1 e, μ	2j/1J	Yes	139	W' mass	4.3 TeV	$g_V = 3$	2004.14636
Gau	HVT $V' \rightarrow WV \rightarrow qqqq \text{ model B}$	$0e, \mu$	2 J	-	139	V' mass	3.8 TeV	$g_V = 3$	1906.08589
Ö	HVT $V' \rightarrow WH/ZH$ model B m	ulti-chann	el		36.1	V' mass	2.93 TeV	$g_V = 3$	1712.06518
	HVT $W' \rightarrow WH$ model B	$0e, \mu$	≥ 1 b, ≥ 2 J		139	W' mass	3.2 TeV	$g_V = 3$	CERN-EP-2020-073
	LRSM $W_R \to tb$ m	ulti-chann	el		36.1	W _R mass	3.25 TeV		1807.10473
	LRSM $W_R \to \mu N_R$	2μ	1 J	1—	80	W _R mass	5.0 TeV	$m(N_R)=0.5$ TeV, $g_L=g_R$	1904.12679

New flavour universal U(1) gauge symmetries must be broken at scales above 5 TeV

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2020

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ , γ	Jets†	E _T	$\int \mathcal{L} dt [fb]$	·¹]	Limit		Reference
	SSM $Z' \to \ell\ell$	$2e, \mu$	-	1-	139	Z' mass	5.1 TeV		1903.06248
	SSM $Z' \rightarrow \tau \tau$	2τ	_	_	36.1	Z' mass	2.42 TeV		1709.07242
SI	Leptophobic $Z' \rightarrow bb$	_	2 b	\sim	36.1	Z' mass	2.1 TeV		1805.09299
Gauge boson	Leptophobic $Z' \rightarrow tt$	$0e, \mu$	≥ 1 b, ≥ 2 J	Yes	139	Z' mass	4.1 TeV	$\Gamma/m = 1.2\%$	2005.05138
	SSM $W' \rightarrow \ell \nu$	1 e, μ	<u>-</u> -	Yes	139	W' mass	6.0 TeV		1906.05609
	SSM $W' \rightarrow \tau \nu$	1 $ au$	_	Yes	36.1	W' mass	3.7 TeV		1801.06992
	HVT $W' \rightarrow WZ \rightarrow \ell \nu qq \text{ model B}$	1 e, μ	2j/1J	Yes	139	W' mass	4.3 TeV	$g_V = 3$	2004.14636
ani	HVT $V' \rightarrow WV \rightarrow qqqq \text{ model B}$	$0e, \mu$	2 J	_	139	V' mass	3.8 TeV	$g_V = 3$	1906.08589
Ö	HVT $V' \rightarrow WH/ZH$ model B m	nulti-chann	el		36.1	V' mass	2.93 TeV	$g_V = 3$	1712.06518
200	HVT $W' \rightarrow WH$ model B	$0e, \mu$	≥ 1 b, ≥ 2 J		139	W' mass	3.2 TeV	$g_V = 3$	CERN-EP-2020-073
	LRSM $W_R \to tb$	nulti-chann	el		36.1	W _R mass	3.25 TeV		1807.10473
	LRSM $W_R \to \mu N_R$	2μ	1 J	-	80	W _R mass	5.0 TeV	$m(N_R)=0.5$ TeV, $g_L=g_R$	1904.12679

New flavour universal U(1) gauge symmetries must be broken at scales above 5 TeV

New Higgs bosons can be well beyond the reach of the LHC

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2020

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ , γ	Jets†	E _T miss	$\int \mathcal{L} dt[fb]$	⁻¹]	Limit			Reference
	SSM $Z' \to \ell\ell$	$2e, \mu$	_	_	139	Z' mass		5.1 TeV		1903.06248
	SSM $Z' \rightarrow \tau \tau$	2τ	_	_	36.1	Z' mass		2.42 TeV		1709.07242
S	Leptophobic $Z' \rightarrow bb$	_	2 b	_	36.1	Z' mass		2.1 TeV		1805.09299
Gauge bosons	Leptophobic $Z' \rightarrow tt$	$0e, \mu$	≥ 1 b, ≥ 2 c	J Yes	139	Z' mass		4.1 TeV	$\Gamma/m = 1.2\%$	2005.05138
	SSM $W' \rightarrow \ell \nu$	1 e, μ	_	Yes	139	W' mass		6.0 TeV		1906.05609
	SSM $W' \rightarrow \tau \nu$	1 τ	_	Yes	36.1	W' mass		3.7 TeV		1801.06992
	HVT $W' \rightarrow WZ \rightarrow \ell \nu qq$ model B	1 e, μ	2j/1J	Yes	139	W' mass		4.3 TeV	$g_V = 3$	2004.14636
m	HVT $V' \rightarrow WV \rightarrow qqqq$ model B	$0e, \mu$	2 J	_	139	V' mass		3.8 TeV	$g_V = 3$	1906.08589
Ö	HVT $V' \rightarrow WH/ZH$ model B m	ulti-chann	el		36.1	V' mass		2.93 TeV	$g_V = 3$	1712.06518
	HVT $W' \rightarrow WH$ model B	$0e, \mu$	≥ 1 b, ≥ 2 c	J	139	W' mass		3.2 TeV	$g_V = 3$	CERN-EP-2020-073
	LRSM $W_R \to tb$ m	ulti-chann	el		36.1	W _R mass		3.25 TeV		1807.10473
	LRSM $W_R \rightarrow \mu N_R$	2μ	1 J	-	80	W _R mass		5.0 TeV	$m(N_R)=0.5$ TeV, $g_L=g_R$	1904.12679

New flavour universal U(1) gauge symmetries must be broken at scales above 5 TeV

New Higgs bosons can be well beyond the reach of the LHC

Can we indirectly test the presence of heavy or superheavy scalar sectors?

Short answer: YES

How? Measurement of stochastic gravitational waves background (SGWB) at interferometers — LISA, LIGO-Virgo-Kagra (LVK), Einstein Telescope (ET), BBO, muARES

Which source of SGWB? First order phase transitions (FOPT) in the early Universe e.g. in the presence of new gauge symmetries

First order phase transition (FOPT)

(Illustration)

 $\begin{array}{c} \text{Strength} \\ \alpha \\ \\ \text{Inverse} \\ \text{duration} \\ \beta / H \\ \\ \text{Percolation} \\ \text{temperature} \\ \end{array}$

Credit: Marco Finetti

Effect of the thermodynamic parameters on the SGWB

Sources of SGWB

Adapted from Phys.Rev.Lett. 125 (2020) 2, 021302

- 1. Bubble collisions: Can become efficient with supercooling for extreme $\alpha \gg 1$
- 2. Sound waves: Dominant in most cases due to friction
- 3. Magnetohydrodynamics turbulence: highly uncertain and subdominant at the peak (at least for now...)

Latest SGWB templates taken from LISA CosWG

[C. Caprini, et al., 2403.03723]

A SGWB detection can represent the first direct measurement of the Universe prior to the BBN era, a breakthrough comparable to the discovery of the CMB

Case study: Classical scale invariant U(1)' models that explain neutrino oscillation data

Field	$\mathbf{U}(1)'$
Q	$\frac{1}{3}x_{\mathcal{H}} + \frac{1}{6}x_{\sigma}$
u_R	$\frac{4}{3}x_{\mathcal{H}} + \frac{1}{6}x_{\sigma}$
d_R	$-\frac{2}{3}x_{\mathcal{H}} + \frac{1}{6}x_{\sigma}$
L	$-x_{\mathcal{H}} - \frac{1}{2}x_{\sigma}$
e_R	$-2x_{\mathcal{H}} - \frac{1}{2}x_{\sigma}$
${\cal H}$	$x_{\mathcal{H}}$
$ u_R$	$-\frac{1}{2}x_{\sigma}$
σ	x_{σ}

Classical scale symmetry (CSS)

$$x \rightarrow x' = \rho x$$

$$\Phi \rightarrow \Phi' = \rho^a \Phi$$
 $a = -1$ for bosons
 $a = -3/2$ for fermions

$$\mathcal{L}_{\nu} = y_{\nu}^{ij} \overline{L}_{i} \tilde{\mathcal{H}} \nu_{Rj} + y_{\sigma}^{ij} \overline{\nu}_{Ri}^{c} \nu_{Rj} \sigma + \text{h.c.}$$

Neutrino masses and mixing via type-I seesaw

$$V_0(\mathcal{H}, \sigma) = \lambda_h(\mathcal{H}^{\dagger}\mathcal{H})^2 + \lambda_{\sigma}(\sigma^{\dagger}\sigma)^2 + \lambda_{\sigma h}(\mathcal{H}^{\dagger}\mathcal{H})(\sigma^{\dagger}\sigma)$$

$$M_{h_1}^{(0)} = 0 \qquad M_{h_2}^{(0)} \neq 0$$

Higgs as a Pseudo-Goldstone of CSS denoted as *scalon* in 1976 by Gildener and Weinberg

E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13 (1976) 3333.

[S. R. Coleman, E. J. Weinberg, Physical.Rev. D7 (1973) 1888]

$$0 = \lambda_h v^3 + \frac{1}{2} \lambda_{\sigma h} v v_{\sigma}^2 + \frac{\partial V_{\text{CW}}}{\partial \phi_h} \Big|_{\phi_h = v, \phi_{\sigma} = v_{\sigma}},$$

$$0 = \lambda_{\sigma} v_{\sigma}^3 + \frac{1}{2} \lambda_{\sigma h} v^2 v_{\sigma} + \frac{\partial V_{\text{CW}}}{\partial \phi_{\sigma}} \Big|_{\phi_h = v, \phi_{\sigma} = v_{\sigma}}$$

Advantages:

- 1. Dynamical symmetry breaking
- 2. Only 1 free parameter in the scalar sector M_{h_2}
- 3. Only 1+2 free parameters in the gauge sector g_L and the charges x_{σ} , x_H
- 4. Only 3 free parameter in neutrino sector $[y_{\sigma}]_{ii}$ taken as diagonal
- 5. Rich SGWB predictions due to strongly supercooled FOPTs $\implies h^2\Omega_{\mathrm{GW}}$ is large

5. Rich SGWB predictions due to strongly supercooled FOPTs $\implies h^2\Omega_{\rm GW}$ is large

$$V_{\text{eff}}^{\text{HT}} = \phi_{\sigma}^{4} \left(-\frac{g_{L}^{4}}{2\pi^{2}} - \frac{g_{L}^{3}}{2\sqrt{2}\pi} + \frac{\lambda_{\sigma}}{4} + \frac{\ln 2\left(\left[\sum_{i=1}^{3} [\boldsymbol{y_{\sigma}^{4}}]_{ii} \right)}{32\pi^{2}} \right) - \phi_{\sigma}^{3} \frac{4g_{L}^{3}T}{3\pi} \right. + \phi_{\sigma}^{2} \left(\frac{g_{L}^{2}T^{2}}{2} - \frac{g_{L}^{3}T^{2}}{\sqrt{2}\pi} + \frac{T^{2}}{48} \sum_{i=1}^{3} [\boldsymbol{y_{\sigma}^{2}}]_{ii} \right)$$

- 5.1) Negative cubic term generated at finite T
- 5.2) Potential barrier persists as the Universe supercools down to $T \rightarrow 0$

5.3)
$$\Delta V$$
 is maximized $\Longrightarrow \alpha \approx \frac{\Delta V}{\rho_R} \gg 1$

Just a few technicalities

$$V(\phi_{\sigma}, T) = V_0(\phi_{\sigma}) + V_{\text{CW}}(\phi_{\sigma}) + V_T(\phi_{\sigma}, T) + V_{\text{Daisy}}(\phi_{\sigma}, T)$$

Thermal corrections

RG improved potential

$$\lambda \to \lambda(t)$$

$$\phi \to \frac{\phi^2}{2} \exp\left\{ \int_0^t dt \, \gamma(\lambda(t)) \right\}$$

$$t = \log\left(\mu/M_Z\right)$$

$$V_{T}(\phi_{\sigma}, T) = \frac{T^{4}}{2\pi^{2}} \sum_{i} n_{i} J_{i} \left(\frac{M^{2}(\phi_{\sigma})}{T^{2}} \right) \quad J_{F,B}(y^{2}) = \int_{0}^{\infty} dx x^{2} \log \left(1 \pm e^{-\sqrt{x^{2} + y^{2}}} \right)$$

$$V_{\text{Daisy}}(\phi_{\sigma}, T) = -\frac{T}{2\pi} \sum_{i} n_{i} \left[\left(M(\phi_{\sigma}) + \Pi(T) \right)^{3} - M^{3}(\phi_{\sigma}) \right]$$

Use CosmoTransitions for phase tracing and bounce solution

From thermodynamic to SGWB geometric parameters

$$h^2\Omega_{\rm GW}^{\rm peak} \propto \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{\beta}{H(T_p)}\right)^{-2} \left(\frac{\Gamma_{h_2}}{H(T_p)}\right)^{2/3} \qquad f_{\rm peak} \propto \left(\frac{\beta}{H(T_p)}\right) \left(\frac{T_{\rm RH}}{\rm GeV}\right) \left(\frac{\Gamma_{h_2}}{H(T_p)}\right)^{-1/3}$$

$$T_{\rm RH} \approx T_p \left(1+\alpha\right)^{1/4} \left(\frac{\Gamma_{h_2}}{H(T_p)}\right)^{1/2} \qquad T_c > T_{\rm RH} \gg T_n > T_p$$
 Early matter domination if $\Gamma_{h_2} < H(T_p) \Longrightarrow$ SUPRESSION of SGWB

Take
$$\frac{\Gamma_{h_2}}{H(T_p)}=1$$
 if radiation domination i.e. $\Gamma_{h_2}>H(T_p)$

SGWB predictions: The U(1)_{R_L} case $x_{\sigma} = 2$ and $x_H = 0$

Gauge coupling controls the peak amplitude

Strong supercooled FOPTs with $\alpha > 10$ for $0.26 \lesssim g_L \lesssim 0.42$

Larger $h^2 \Omega_{\rm GW}^{\rm peak}$ for smaller g_L due to slower running $16\pi^2 \beta_{\lambda_\sigma} = 3g_L^4 x_\sigma^4 + \cdots$

SGWB predictions: The $U(1)_{B-L}$ case $x_{\sigma}=2$ and $x_{H}=0$

$$h^2 \Omega_{\mathrm{GW}}^{\mathrm{peak}} \propto \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{\beta}{H(T_p)}\right)^{-2} \approx \frac{\Delta V}{T_p^{2/3}} \quad \text{for } \alpha \gg 1$$

 β/H dependency flattens out with strong supercooling

Full range of strong supercooling ($\alpha \gtrsim 100$) at the reach of LISA, ET and LIGO-O5 run (2028)

LVK data already puts constraints on heavy Higgs

Lower bound on $\beta/H \gtrsim 8$ from PBH constraints [Y. Gouttenoire, T. Volanski, 2305.04942]

In circled points the volume of false vacuum near T_p is not decreasing but only at $T < T_p$

SGWB predictions: The $U(1)_{B-L}$ case $x_{\sigma}=2$ and $x_{H}=0$

$$\Gamma_{h_2 \to \bar{N}_i N_i} = \frac{M_{h_2}}{16\pi v_\sigma^2} \sum_{i=1}^3 M_{N_i}^2 \sqrt{1 - \frac{4M_{N_i}^2}{M_{h_2}^2}}$$

Heavy Higgs controls the peak frequency

Matter domination period suppresses the SGWB at high frequencies when $M_{h_2}\gg M_{\nu_{R,3}}$

SGWB predictions: The $U(1)_{B-L}$ case $x_{\sigma}=2$ and $x_{H}=0$

For fixed $g_L \Rightarrow$ fixed $h^2 \Omega_{\rm GW}^{\rm peak} \Rightarrow$ similar $\beta_{\lambda_\sigma} \sim 3g_L^4 x_\sigma^4 + \cdots$

Similar behaviour with Z' mass since $M_{Z'} \sim M_{h_2} \sim v_{\sigma}$

- Low $f_{\rm peak}$: λ_{σ} must start at lower values to maximize ΔV
- High $f_{\rm peak}$: a larger breaking scale contributing to larger $\Delta V \sim v_{\sigma}^4$ implies larger λ_{σ}

SGWB predictions if we remove neutrino sector $\left[y_{\sigma}\right]_{ii} \to 0$

No SGWB predictions at high frequencies — LIGO, ET

Heavy Higgs decay to SM highly suppressed by portal coupling $\lambda_{\sigma h} \sim \frac{v^2}{v_z^2}$ for $M_{h_2} \gtrsim 100 \text{ TeV}$

SGWB at LIGO/ET can be seen as a signature of the neutrino sector in this class of models

$$\begin{split} &\Gamma_{h_2 \to h_1 h_1} = \frac{\lambda_{\sigma h}^2 v_{\sigma}^2}{32\pi M_{h_2}} \sqrt{1 - \frac{M_{h_1}^2}{M_{h_2}^2}} \,, \\ &\Gamma_{h_2 \to \bar{f}f} = \frac{M_{h_2} \sin^2 \theta}{16\pi v^2} \sum_f M_f^2 \sqrt{1 - \frac{4M_f^2}{M_{h_2}^2}} \,, \\ &\Gamma_{h_2 \to VV} = \frac{C_V m_{h_2}^3 \sin^2 \theta}{16\pi v^2} \sqrt{1 - \frac{4M_V^2}{M_{h_2}^2}} \left(1 - \frac{4M_V^2}{M_{h_2}^2} + \frac{12M_V^4}{M_{h_2}^4}\right) \\ &\sin 2\theta = \frac{2v v_{\sigma} \lambda_{\sigma h}}{M_L^2 - M_I^2} \end{split}$$

SGWB predictions for generic U(1)' with charges (x_H, x_σ)

Thermodynamic parameters weakly dependent on x_H

Higher temperatures preferred near the B-L model ← larger charges imply Landau poles at lower scales

SGWB predictions for generic U(1)' with charges (x_H, x_σ)

Different models for fixed $g_L x_\sigma$ have little impact, overshadowed by current uncertainties

 x_H enters the scalar potential via V_{CW} and eta-functions

Indirectly testing U(1)' models with SGWB

$$SNR = \sqrt{\mathcal{T} \int df \frac{h^2 \Omega_{GW}(f)}{h^2 \Omega_{Sens}(f)}}$$

Require SNR > 10 for observable SGWB

LVK excluded a region with $10^{12}~{\rm GeV} < M_{h_2} \sim M_{Z'} < 10^{16}~{\rm GeV}$ with $g_L x_\sigma \sim 0.6$

LISA+ET+LIGO can cover the entire mass range $M_{h_2} > 1 \text{TeV}$, $M_{Z'} > 10 \text{ TeV}$ with $0.55 \lesssim g_L x_\sigma \lesssim 0.8$

Conclusions

- 1. Current and near future GW interferometers (LISA+ET+LIGO) can:
 - (i) Test the presence of strong supercooling with $\alpha \gtrsim 100$ in generic CSS U(1)' models
 - (ii) Put constraints on the $g_L x_\sigma$ vs M_{h_2} , $M_{Z'}$ plane for a wide mass range above the TeV scale in the presence of supercooled FOPTs
 - (iii) LVK data is already constraining this class of models for masses above 10^{12} GeV and $g_L x_\sigma \approx 0.6$
- 2. This class of models also explains active neutrino oscillation data
- 3. Presence of right-handed neutrinos is crucial for SGWB observables at high frequencies
- 4. Overall, LISA+ET+LIGO can either rule out most of the parameter space challenging the hypothesis of supercooled FOPTs and CSS, or lead to a groundbreaking discovery

Sources of uncertainty

Bubble radius distribution

Efficiency factors

Dimensional reduction

Theoretical predictions are not robust as they strongly depend on the transition temperature

$$h^2\Omega_{\rm GW} \propto \frac{(\Delta V)^2}{T_*^8}$$

Why large uncertainties?

$$m_{\rm eff}^2 = (m^2 + a_{_{1-{\rm loop}}} T^2) \ll m^2 \qquad {\rm Large~theoretical~errors~at~the~phase} \\ b_{_{2-{\rm loop}}} T^2 \approx m_{\rm eff}^2 \qquad {\rm transition}$$

$$\mu \frac{d}{d \log \mu} m_{\rm eff}^2 \approx m_{\rm eff}^2 \qquad \begin{array}{c} \text{Large scale} \\ \text{dependency} \end{array}$$

$$\log \left(T^2 / m_{\text{eff}}^2 \right) \gg 1$$
 Large logs

Theoretical predictions are not robust as they strongly depend on the transition temperature

$$h^2\Omega_{\rm GW}\propto \frac{(\Delta V)^2}{T_*^8}$$

Why large uncertainties?

$$m_{
m eff}^2=(m^2+a_{_{1-{
m loop}}}T^2)\ll m^2$$
 Large theoretical errors at the phase $b_{_{2-{
m loop}}}T^2pprox m_{
m eff}^2$ transition

$$\mu \frac{d}{d \log \mu} m_{\rm eff}^2 \approx m_{\rm eff}^2 \qquad \qquad \text{Large scale}$$
 dependency

$$\log\left(T^2/m_{\rm eff}^2\right) \gg 1$$

Large logs

[Image credit: P. Schicho]

[Kajantie et al 9508379, Gould et al 2104.04399]

$$\log \left(T^2/m_{\rm eff}^2 \right) \to \log \left(T^2/\mu^2 \right) + \log \left(\mu^2/m_{\rm eff}^2 \right)$$
 Match at $\mu \sim T$ RG-evolution in the EFT

• In thermal equilibrium heavy "particles" show up as an infinite tower of Matsubara (static) modes:

$$\partial_{\mu}\phi(x)\partial^{\mu}\phi(x)\rightarrow\overrightarrow{\nabla}\phi(\overrightarrow{x})\cdot\overrightarrow{\nabla}\phi(\overrightarrow{x})+\sum_{n=-\infty}^{+\infty}(2\pi nT)^{2}\phi(\overrightarrow{x})^{2}$$
No time dependence
Integrate out heavy particles

In practice: write down the most general 3d-spacial Lagrangian and match the couplings

$$\frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4 \rightarrow \frac{1}{2}m_{3d}^2(T, m, \lambda)\phi^2 + \frac{1}{4}\lambda_{3d}(T, m, \lambda)\phi^4$$
 Only valid at high-T

$$\phi \rightarrow \frac{\phi}{\sqrt{T}}$$

$$V_{4d} = TV_{3d}$$

In practice: write down the most general 3d-spacial Lagrangian and match the couplings

$$\frac{1}{2}m^{2}\phi^{2} + \frac{1}{4}\lambda\phi^{4} \rightarrow \frac{1}{2}m_{3d}^{2}(T, m, \lambda)\phi^{2} + \frac{1}{4}\lambda_{3d}(T, m, \lambda)\phi^{4}$$

$$\phi \rightarrow \frac{\phi}{\sqrt{T}}$$

$$V_{4d} = TV_{3d}$$

Procedure automatised in DRAlgo

[A. Ekstedt et al, Comput. Phys. Commun 288 (2023) 108725, 2205.08815]

[Image credit: P. Schicho]