Electroweak Scale Hierarchy from Custodial Symmetry

Andreas Trautner

based on:

arXiv:2407.15920 w/ Thede de Boer and Manfred Lindner

Workshop on Multi-Higgs Models 2024, Lisbon 06.09.24

Outline

- Hierarchy problem
- General idea of "Custodial Naturalness"
- Minimal model
- Numerical analysis, experimental constraints and predictions
- Extensions and embeddings
- Conclusions

Disclaimer: For this talk in 4D, scale invariance \sim conformal invariance.

What does it have to do with NHDM?

What does it have to do with NHDM?

No problem: Just think of it as a "
$$N = 1 + \frac{1}{2}$$
 NHDM."

What does it have to do with NHDM?

No problem: Just think of it as a "
$$N = 1 + rac{1}{2}$$
 NHDM."

Miguel Levy: "Still better than "
$$N = 1 + 2 + 3 + 4 + \cdots = -\frac{1}{12}$$
 NHDM."

Electroweak scale hierarchy problem

Not a problem *in* the Standard Model (SM). [Bardeen '95] However, in presence of heavy scales Λ_{high} , it remains puzzling that

(see, however, [Mooij, Shaposhnikov '21], [K.-S. Choi '24])

 $m_h^2 \propto \Lambda_{
m high}^2 \,,$

which, in case e.g. $\Lambda_{\rm high} \sim M_{\rm Pl}$, is not supported by observation.

Symmetry based solutions:

- Supersymmetry.
- Composite Higgs (h = pNGB of some new strongly coupled sector).

However, neither is the SM close-to supersymmetric, nor do the Higgs measurements hint at compositeness. No top-partners observed.

But: SM is close to scale invariant, explicitly broken only by $\mu_H (\sim m_h \sim v_{\rm EW})_{\rm SM}$.

- The SM exhibits classical scale symmetry, only explicitly broken by $\mu_H^2 |H|^2$.
- Quantum corrections *could* spontaneously generate $\mu_H^2 \sim \Lambda_{CW}^2 \sim e^{-\frac{\lambda}{g^4}} \Lambda_{high}^2$,
- . . . But in SM this parametrically only works for $m_h \sim m_t \sim \mathcal{O}(10\,{
 m GeV})$.[Weinberg '76]

- The SM exhibits classical scale symmetry, only explicitly broken by $\mu_H^2 |H|^2$.
- Quantum corrections *could* spontaneously generate $\mu_H^2 \sim \Lambda_{CW}^2 \sim e^{-\frac{\lambda}{g^4}} \Lambda_{high}^2$,
- ... But in SM this parametrically only works for $m_h \sim m_t \sim \mathcal{O}(10\,{
 m GeV})$.[Weinberg '76]
- Instead, dim. transmutation in new sector + Higgs portal? $\lambda_p |H|^2 |\Phi|^2$ [Hempfling '96]+...
- This usually re-introduces a **little** hierarchy problem $\mu_H \sim \lambda_p \times \Lambda_{CW}$.

- The SM exhibits classical scale symmetry, only explicitly broken by $\mu_H^2 |H|^2$.
- Quantum corrections *could* spontaneously generate $\mu_H^2 \sim \Lambda_{CW}^2 \sim e^{-\frac{\lambda}{g^4}} \Lambda_{high}^2$,
- . . . But in SM this parametrically only works for $m_h \sim m_t \sim \mathcal{O}(10\,{
 m GeV})$.[Weinberg '76]
- Instead, dim. transmutation in new sector + Higgs portal? $\lambda_p |H|^2 |\Phi|^2$ [Hempfling '96]+...
- This usually re-introduces a **little** hierarchy problem $\mu_H \sim \lambda_p \times \Lambda_{CW}$.

New here:

Higgs as pNGB of spontaneosuly broken **custodial symmetry** avoids this problem.

- The SM exhibits classical scale symmetry, only explicitly broken by $\mu_H^2 |H|^2$.
- Quantum corrections *could* spontaneously generate $\mu_H^2 \sim \Lambda_{CW}^2 \sim e^{-\frac{\lambda}{g^4}} \Lambda_{high}^2$,
- . . . But in SM this parametrically only works for $m_h \sim m_t \sim \mathcal{O}(10\,{
 m GeV})$.[Weinberg '76]
- Instead, dim. transmutation in new sector + Higgs portal? $\lambda_p |H|^2 |\Phi|^2$ [Hempfling '96]+...
- This usually re-introduces a **little** hierarchy problem $\mu_H \sim \lambda_p \times \Lambda_{CW}$.

New here:

Higgs as pNGB of spontaneosuly broken **custodial symmetry** avoids this problem.

- ✓ Technically natural suppression of EW scale.
- ✓ Only elementary fields, no compositeness.
- ✓ No top partners, marginal top Yukawa like in SM.

"Custodial Naturalness" - General Idea

Assumptions:

- 1. Classical scale invariance.
- 2. New complex scalar Φ + new $U(1)_X$ gauge symmetry. $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$
- 3. High-scale SO(6) custodial symmetry of scalar potential:

$$\Rightarrow V(H,\Phi) = \lambda \left(|H|^2 + |\Phi|^2\right)^2 \text{ at } \mu = \Lambda_{\text{high}} \equiv M_{\text{Pl}}.$$

"Custodial Naturalness" – General Idea

Assumptions:

- 1. Classical scale invariance.
- 2. New complex scalar Φ + new $U(1)_X$ gauge symmetry. $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$
- 3. High-scale SO(6) custodial symmetry of scalar potential:

$$\Rightarrow \qquad V(H,\Phi) \ = \ \lambda \left(|H|^2 + |\Phi|^2
ight)^2 \ \ {
m at} \ \mu = \Lambda_{
m high} \equiv M_{
m Pl} \, .$$

Both, scale invariance + SO(6) are broken by quantum effects.

- If SO(6) were classically exact \rightarrow [Coleman, Weinberg '73] \rightarrow VEVs $\langle \Phi \rangle \& \langle H \rangle$.
- \Rightarrow SO(6) $\xrightarrow{\langle 6 \rangle}$ SO(5): massive dilaton + 4 *would-be* NGBs + massless NGB "h".

"Custodial Naturalness" - General Idea

Assumptions:

- 1. Classical scale invariance.
- 2. New complex scalar Φ + new $U(1)_X$ gauge symmetry. $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$
- 3. High-scale SO(6) custodial symmetry of scalar potential:

$$\Rightarrow \qquad V(H,\Phi) \ = \ \lambda \left(|H|^2 + |\Phi|^2
ight)^2 \ \ {
m at} \ \mu = \Lambda_{
m high} \equiv M_{
m Pl} \, .$$

Both, scale invariance + SO(6) are broken by quantum effects.

- If SO(6) were classically exact \rightarrow [Coleman, Weinberg '73] \rightarrow VEVs $\langle \Phi \rangle \& \langle H \rangle$. \Rightarrow SO(6) $\xrightarrow{\langle 6 \rangle}$ SO(5): massive dilaton + 4 would-be NGBs + massless NGB "h".
- Realistically: SO(6) explicitly broken by: $y_t, g_Y \& g_X, g_{12}, \ldots$, e.g. y_{new} \Rightarrow SO(6) $\xrightarrow{\langle 6 \rangle}$ SO(5): massive dilaton + 4 *would-be* NGBs + massive pNGB "h".

General Idea – RGE evolution is key

below $M_{\rm Pl}$: $V_{\rm tree}(H,\Phi) = \lambda_H |H|^4 + 2 \lambda_p |\Phi|^2 |H|^2 + \lambda_\Phi |\Phi|^4$.

Actual running for a benchmark point. Dashed=negative. β_i : Beta function coefficients. Custodial sym. breaking:

• dominant breaking: y_t

 $\Rightarrow \quad \langle H\rangle \ll \langle \Phi\rangle$

 splitting λ_Φ - λ_p requires a new breaking of C.S.

Minimal C.S. breaking:

 $\label{eq:U1} \begin{array}{l} \mathrm{U}(1)_{\mathrm{X}} - \mathrm{U}(1)_{\mathrm{Y}} \\ \text{gauge kinetic mixing } g_{12}. \end{array}$

This generates " $\lambda_{\Phi} - \lambda_{p}$."

Andreas Trautner

General Idea – Masses and EW scale

Masses of physical real scalars $h_{\Phi} \subset \Phi$ and $h \subset H$:

by sical real scalars
$$h_{\Phi} \subset \Phi$$
 and $h \subset H$: $\langle \Phi \rangle = \frac{v_{\Phi}}{\sqrt{2}}, \langle H \rangle = \frac{v_{h}}{\sqrt{2}}$ Dilaton: $m_{h_{\Phi}}^{2} \approx \frac{3 g_{X}^{4}}{8\pi^{2}} v_{\Phi}^{2}$ NGB Higgs: $m_{h}^{2} \approx 2 \left[\lambda_{\Phi} \left(1 + \frac{g_{12}}{2 g_{X}} \right)^{2} - \lambda_{p} \right] v_{\Phi}^{2}$

- This corresponds to $m_{h_{\Phi}}^2 \approx \beta_{\lambda_{\Phi}} v_{\Phi}^2$ and $m_h^2 \approx 2 \left(\lambda_{\Phi} \beta_{\lambda_p} / \beta_{\lambda_{\Phi}} \lambda_p \right) v_{\Phi}^2$.
- λ_H can stay at its SM value.

p

EW scale VEV gets to keep the SM relation

$$v_H^2 \approx \frac{m_h^2}{2\lambda_H} \; .$$

 \Rightarrow The EW scale is custodially suppressed compared to the intermediate scale v_{Φ} of spontaneous scale and custodial symmetry violation.

Minimal Model

Field	#Gens.	$SU(3)_c imes SU(2)_L imes U(1)_Y$	$U(1)_X$	$\rm U(1)_{B-L}$
Q	3	$(3,2,+rac{1}{6})$	$-\frac{2}{3}$	$+\frac{1}{3}$
u_R	3	$(3,1,+ frac{2}{3})$	$+\frac{1}{3}$	$+\frac{1}{3}$
d_R	3	$(3,1,-rac{1}{3})$	$-\frac{5}{3}$	$+\frac{1}{3}$
L	3	$(1,2,- frac{1}{2})$	+2	$^{-1}$
e_R	3	(1 , 1 ,-1)	+1	$^{-1}$
$ u_R$	3	(1, 1, 0)	+3	-1
H	1	$(1,2,+rac{1}{2})$	+1	0
Φ	1	(1, 1, 0)	+1	$q_{\Phi}^{\rm B-L} = -\frac{1}{3}$

$$Q^{(X)} \equiv 2 Q^{(Y)} + \frac{1}{q_{\Phi}^{B-L}} Q^{(B-L)}$$

- The only free parameter of the charge assignment is $q_{\Phi}^{\rm B-L}$.
- Constrained to $\frac{1}{3} \lesssim |q_{\Phi}^{B-L}| \lesssim \frac{5}{11}$; special value: $q_{\Phi}^{B-L} = -\frac{16}{41}$. Let us fix $q_{\Phi}^{B-L} = -\frac{1}{3}$.

Note: Our model is very similar to "classical conformal extension of minimal B - L model", but $q_{\Phi}^{B-L} \neq -2$. [Iso, Okada, Orikasa '09]

Numerical analysis

- SM parameters $G_{\rm F}$, m_h , $m_t \leftrightarrow$ parameters λ , g_X and y_t (@ $\Lambda_{\rm high} \sim M_{\rm Pl}$).
- Remaining free parameter: g_{12} . Can fix $g_{12}|_{M_{P1}} = 0 \quad \Leftrightarrow \quad \text{C.S. fixes all d.o.f.'s.}$

Same number of parameters as the SM!

 \rightarrow Properties of Z' and h_{Φ} are predictions of the model.

Numerical analysis

- SM parameters $G_{\rm F}$, m_h , $m_t \leftrightarrow$ parameters λ , g_X and y_t (@ $\Lambda_{\rm high} \sim M_{\rm Pl}$).
- Remaining free parameter: g_{12} . Can fix $g_{12}|_{M_{P1}} = 0 \quad \Leftrightarrow \quad \text{C.S. fixes all d.o.f.'s.}$

Same number of parameters as the SM!

 \rightarrow Properties of Z' and h_{Φ} are predictions of the model.

Parameter scan

- Impose SO(6) symmetric BC's $@M_{\text{Pl}}: \lambda_{H,\Phi,p}|_{M_{\text{Pl}}} = \lambda|_{M_{\text{Pl}}} \text{ and } g_{12}|_{M_{\text{Pl}}} = 0.$
- 2-loop running with PyR@TE. [Sartore, Schienbein '21]
- Iteratively determine intermediate scale Φ_0 , match to SM at $\mu_0 \sim \mathcal{O}(g_X \Phi_0)$.
- Numerically minimize 1-loop V_{eff} (at μ_0), compute v_{Φ} and v_H , $m_{h_{\Phi}}$, m_h , $\lambda_{H,\Phi,p}$, match to 1-loop $V_{\text{eff}}^{\text{SM}}$ (+dilaton hidden scalar, corrections negligible).
- From μ_0 down to m_t 2-loop running.
- Require $v_H^{\text{exp}} = 246.2 \pm 0.1 \text{ GeV}$, as well as g_L , g_Y , g_3 and y_t within SM errors.
- Low scale new couplings g_X , g_{12} and masses $m_{Z'}$, $m_{h_{\Phi}}$ are predictions.

Parameter space

Parameters at $\mu = M_{\rm Pl}$. All points shown reproduce the correct EW scale. New scale $\langle \Phi \rangle = v_{\Phi}/\sqrt{2}$ is prediction. (m_h, M_t not imposed as constraint).

Andreas Trautner

Phenomenological constraints

- $Z' \to l^+ l^-$ resonance searches require $m_{Z'}\gtrsim 4~{\rm TeV}.$ (di-jets are weaker)
- EW precision: Additional custodial breaking shifts *m_Z*:

 $\Delta m_Z \propto -m_Z \langle H \rangle^2 / (2 \langle \Phi \rangle^2)$.

- Constraint: $\langle \Phi \rangle \gtrsim 18 \, {\rm TeV}$, weaker than direct Z' searches.
- Dilaton-higgs mixing:

$$\mathcal{O}_{h_{\Phi}} \approx \sin \theta \times \mathcal{O}_{h \to h_{\Phi}}^{\mathrm{SM}}$$

For $m_{h_{\Phi}} \sim 75 \,\text{GeV}$, $\sin \theta \lesssim 10^{-1}$ is a-OK. (typical values for us are BP: $\sin \theta \sim 10^{-2.5}$)

• Neglect dilaton-gauge² coupling from trace anomaly, suppressed by v_h/v_{Φ} .

Reproductions and predictions

All points shown reproduce the correct EW scale. M_t : top pole mass.

Fine tuning and Future collider projections

Fine tuning:

$$\Delta \ := \ \max_{g_i} \left| rac{\partial \, \ln rac{\langle H
angle}{\langle \Phi
angle}}{\partial \ln g_i}
ight|$$

Barbiere-Giudice measure. [Barbieri, Giudice '88]

The choice of $\langle H \rangle / \langle \Phi \rangle$ automatically subtracts the shared sensitivity of VEVs to variation of g_i . [Anderson, Castano '95]

Red stars: $g_{12}|_{M_{\rm Pl}} = 0.$

Black star: benchmark point.

Projections are for hypercharge universal Z' from [R.K. Ellis et al. '20]

Prime target: Z' at FC, Dilaton production(+displaced dec.) at Higgs factories.

Extensions and embeddings

"Custodial Naturalness" is reasonably stable under variation of boundary conditions, charge assignments, addition of extra particles. Minimal model: $|\Phi|^2 |H|^2$ and $X^{\mu\nu}Y_{\mu\nu}$, in extensions also $\overline{L}\tilde{H}\Psi_{new}$.

Additional fermions can:

- Provide ingredients for neutrino mass generation, [Iso, Okada, Orikasa '09], [Foot, Kobakhidze, McDonald, Volkas '07]
- Be part of the dark matter,
- "Cure" SM vacuum instability.
- Custodial symmetry could originate from UV fixed point ↔ quantum criticality.
- GUT embeddings $G_{\text{cust.}} \subset G_{\text{GUT}}$ allow to constrain $q_{\text{B}-\text{L}}^{\Phi}$ and compute the size of gauge-kinetic mixing g_{12} .
- Note: We have ignored finite-T effects here, this is yet to be done!
- CW transition is known to be first order → Gravitational wave signals.

[Litim, Wetterich, Tetradis '97], [Dasgupta, Dev, Ghoshal, Mazumdar '22], [Huang, Xie '22]

[S. Okada '18]

[(Das), Oda, Okada, Takahashi '15('16)]

Conclusions

- Classical scale invariance + extended custodial symmetry (here SO(6))
- \Rightarrow New mechanism to explain large scale separation and little hierarchy problem.
- Minimal model: Φ + $U(1)_X$ gauge: same number of parameters as the SM.
- Predicts light scalar dilaton $m_{\Phi} \sim 75 \,\text{GeV} + Z' \,\text{at} \,4 100 \,\text{TeV}$.
- Top mass at lower end of currently allowed 1σ region.
- Perfect model to motivate new colliders + Higgs factory.
- Many extensions to explore, e.g. scale invariant 2HDM + SO(8) ?

Thank You!

Backup slides

Details of the potential and matching

Effective potential for background fields H_b and Φ_b @1-loop \overline{MS} :

 $(-1)^{2s} i \equiv \begin{pmatrix} + \\ - \end{pmatrix}$ for bosons(fermions), $n_i \equiv \# d.o.f$ $C_i = \frac{5}{6} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ for vector bosons(scalars/fermions).

$$V_{\text{eff}} = V_{\text{tree}} + \sum_{i} \frac{n_i (-1)^{2s_i}}{64\pi^2} m_{i,\text{eff}}^4 \left[\ln\left(\frac{m_{i,\text{eff}}^2}{\mu^2}\right) - C_i \right]$$

Two different analytical expansions: First

$$V_{\text{EFT}}(H_b) := V_{\text{eff}}\left(H_b, \tilde{\Phi}(H_b)\right), \quad \text{with} \quad \left. \frac{\partial V_{\text{eff}}}{\partial \Phi_b} \right|_{\Phi_b = \tilde{\Phi}(H_b)} = 0.$$

Using $\Phi_0 := \Phi(H_b/\Phi_b = 0)$, we expand V_{EFT} in $H_b \ll \Phi_0$, \sim RG-scale independent expression

$$V_{\rm EFT} \approx 2 \left[\lambda_p - \left(1 + \frac{g_{12}}{2 g_X} \right)^2 \lambda_\Phi \right] \Phi_0^2 H_b^2 + \frac{\lambda_p \lambda_H}{16 \pi^2} [\dots] \; . \label{eq:VEFT}$$

This expression illustrates the origin of the Higgs mass and EW scale suppression.

$$\begin{split} \text{Alternatively, take } \mu &= \mu_0 := \sqrt{2}g_X \Phi_0 \mathrm{e}^{-1/6} \sim \langle \Phi \rangle \text{ and "t Hooft-like" expansion } \frac{\lambda_p}{\lambda_H} \sim \frac{H_b^2}{\Phi_0^2} \sim \epsilon^2 \to 0 \text{ ,} \\ V_{\mathrm{EFT}} &= -\frac{6}{64\pi^2} \frac{g_X^4}{64\pi^2} \Phi_0^4 + 2\,\lambda_p \Phi_0^2 H_b^2 + \lambda_H H_b^4 + \sum_{i=\mathrm{SM}} \frac{n_i (-1)^{2s_i}}{64\pi^2} m_{i,\mathrm{eff}}^4 \left[\ln\left(\frac{m_{i,\mathrm{eff}}^2}{\mu_0^2}\right) - C_i \right]. \end{split}$$

This expression facilitates matching to the SM at scale μ_0 .

Andreas Trautner

Details of the potential and matching II

For all practical purpose the usual CW relation holds:

$$\Phi_0^2 \approx \exp\left\{-\frac{16\pi^2 \lambda_\Phi}{3g_X^4} - \ln(2g_X^2) + \frac{1}{3} + \dots\right\} \mu^2 \ . \tag{1}$$

Analytically we can use $H_b \ll \tilde{\Phi}(0) := \Phi_0$ and the leading order expression for Φ_0 reads

$$\frac{1}{16\pi^2} \ln\left(\frac{\Phi_0^2}{\mu^2}\right) = -\frac{\lambda_\Phi + \frac{1}{16\pi^2} \left\{q_\Phi^4 g_X^4 \left[3\ln\left(2q_\Phi^2 g_X^2\right) - 1\right] + 4\lambda_p^2 \left(\ln 2\lambda_p - 1\right)\right\}}{3q_\Phi^4 g_X^4 + 4\lambda_p^2} \,. \tag{2}$$

Alternatively, we can use the ϵ expansion, and Φ_0 at $\mathcal{O}(\epsilon^0)$ reads

$$\frac{1}{16\pi^2} \ln\left(\frac{\Phi_0^2}{\mu^2}\right) = -\frac{\lambda_{\Phi} + \frac{1}{16\pi^2} \left\{q_{\Phi}^4 g_X^4 \left[3\ln\left(2q_{\Phi}^2 g_X^2\right) - 1\right]\right\}}{3 q_{\Phi}^4 g_X^4} \,. \tag{3}$$

This is an example for the difference between the two expansion schemes. Note that our quantitative analysis is not based on any of these expansions but uses a fully numerical minimization of the effective potential to compute $\langle \Phi \rangle$ and $\langle H \rangle$.

Integrating out scalar in non-conformal model

Consider a simple two complex scalar system with a potential given by

$$V = -m_{H}^{2}|H|^{2} - m_{\Phi}^{2}|\Phi|^{2} + \frac{\lambda_{H}}{2}|H|^{4} + \lambda_{p}|H|^{2}|\Phi|^{2} + \frac{\lambda_{\Phi}}{2}|\Phi|^{4}.$$

For $m_{\Phi}^2 > 0$ and $-m_H^2 + m_{\Phi}^2 \frac{\lambda_p}{\lambda_{\Phi}} > 0$, this potential has a minimum at $\langle \Phi \rangle := \frac{v_{\Phi}}{\sqrt{2}} = \sqrt{\frac{m_{\Phi}^2}{\lambda_{\Phi}}}, \langle H \rangle = 0$. Integrating out the heavy field Φ at tree level, we find the low energy potential

$$\begin{split} V_{\mathsf{EFT}} &= \left(-m_H^2 + \lambda_p \frac{v_\Phi^2}{2} \right) |H|^2 + \frac{1}{2} \left(\lambda_H + \frac{\lambda_p^2}{\lambda_\Phi} \right) |H|^4 \\ &= \left(-m_H^2 + \lambda_p \frac{m_\Phi^2}{\lambda_\Phi} \right) |H|^2 + \frac{1}{2} \left(\lambda_H + \frac{\lambda_p^2}{\lambda_\Phi} \right) |H|^4. \end{split}$$

The light field is massless at tree level if $\lambda_{\Phi} m_{H}^{2} = \lambda_{p} m_{\Phi}^{2}$. A special point fulfilling this condition is $m_{H}^{2} = m_{\Phi}^{2} := m^{2}$ and $\lambda_{p} = \lambda_{\Phi} := \lambda$. At this point the original potential is given by

$$V = -m^2 \left(|H|^2 + |\Phi|^2 \right) + \frac{\lambda}{2} \left(|H|^2 + |\Phi|^2 \right)^2 + \frac{\lambda_H - \lambda}{2} |H|^4$$

This potential is symmetric up to the quartic term of H which can violate the symmetry badly without affecting the light mass term at tree level.

Andreas Trautner

Benchmark point 1 (BP)

$\mu [{ m GeV}]$	g_X	g_{12}	λ_H	λ_p	λ_{Φ}	y_t	${m_h}_\Phi \; [{\rm GeV}]$	$m_{Z'} \; [{\rm GeV}]$	$m_h \; [{\rm GeV}]$	$v_H \; [{\rm GeV}]$
$1.2 \cdot 10^{19}$	0.0713	0.	$\lambda_H =$	$\lambda_p = \lambda_\Phi = 3$	$3.3030 \cdot 10^{-5}$	0.377	-	-	-	-
4353	0.0668	0.0093	0.084	$-1.6 \cdot 10^{-6}$	$-2.5 \cdot 10^{-11}$	0.795	67.0	5143	132.0	263.0
172	-	-	0.13	-	-	0.930	-	-	125.3	246.1

Table: Input parameters of an example benchmark point (BP) at the high scale (top) and corresponding predictions at the matching scale μ_0 (middle) and M_t (bottom). At μ_0 the bold parameters also correspond to the parameters of the one-loop SM effective potential. The numerical result for the VEV of Φ is $\langle \Phi \rangle = v_{\Phi}/\sqrt{2} = 54407 \,\text{GeV}$.

One-loop RGE's

Neglect all Yukawas besides y_t and take general U(1)_X charges $q_{H,\Phi}$.

$$\begin{split} \beta_{\lambda_{H}} &= \frac{1}{16\pi^{2}} \bigg[+ \frac{3}{2} \left(\left(\frac{g_{Y}^{2}}{2} + \frac{g_{L}^{2}}{2} \right) + 2 \left(q_{H}g_{X} + \frac{g_{12}}{2} \right)^{2} \right)^{2} + \frac{6}{8} g_{L}^{4} - 6y_{t}^{4} \\ &\quad + 24\lambda_{H}^{2} + 4\lambda_{p}^{2} + \lambda_{H} \left(12y_{t}^{2} - 3g_{Y}^{2} - 12 \left(q_{H}g_{X} + \frac{g_{12}}{2} \right)^{2} - 9g_{L}^{2} \right) \bigg] , \\ \beta_{\lambda_{\Phi}} &= \frac{1}{16\pi^{2}} \left(+ 6q_{\Phi}^{4}g_{X}^{4} + 20\lambda_{\Phi}^{2} + 8\lambda_{p}^{2} - 12\lambda_{\Phi}q_{\Phi}^{2}g_{X}^{2} \right) , \\ \beta_{\lambda_{p}} &= \frac{1}{16\pi^{2}} \bigg[+ 6q_{\Phi}^{2}g_{X}^{2} \left(q_{H}g_{X} + \frac{g_{12}}{2} \right)^{2} + 8\lambda_{p}^{2} \\ &\quad + \lambda_{p} \left(8\lambda_{\Phi} + 12\lambda_{H} - \frac{3}{2}g_{Y}^{2} - 6q_{\Phi}^{2}g_{X}^{2} - 6 \left(q_{H}g_{X} + \frac{g_{12}}{2} \right)^{2} - \frac{9}{2}g_{L}^{2} + 6y_{t}^{2} \bigg) \bigg] , \\ \beta_{g_{12}} &= \frac{1}{16\pi^{2}} \left[-\frac{14}{3}g_{X}g_{Y}^{2} - \frac{14}{3}g_{X}g_{12}^{2} + \frac{41}{3}g_{Y}^{2}g_{12} + \frac{179}{3}g_{X}^{2}g_{12} + \frac{41}{6}g_{12}^{3} \right] . \end{split}$$

The dominant splitting of $\lambda_{\Phi} - \lambda_{p}$ via running (for benchmark charges) is given by

$$\beta_{\lambda\Phi} - \beta_{\lambda_p} = -\frac{6 g_{12} g_X^2}{16\pi^2} \left(g_X + \frac{g_{12}}{4} \right) - \frac{\lambda_p}{16\pi^2} \left[6y_t^2 - \frac{9}{2}g_L^2 - \frac{3}{2}g_Y^2 + 12(\lambda_H - \lambda_p) \right] + \dots ,$$

We do the numerical running with the full two-loop beta functions computed with PyR@TE.

Andreas Trautner

Higgs-dilaton mixing

A crude analytic expression for the Higgs-dilaton mixing angle is

$$\tan \theta \approx \frac{2 \left[\lambda_p - \left(1 + \frac{g_{12}}{2g_X}\right)^2 \left(\lambda_\Phi - \frac{3g_X^4}{16\pi^2}\right)\right] v_H v_\Phi}{m_h^2 - m_{h_\Phi}^2}$$

Note: We use a fully numerical evaluation of all masses and mixings for our analysis which also confirms the analytic approximations.