
Chapter 1

QCD

Quantum Chromodynamics (QCD) is the theory of the strong interaction. It describes
the ’color force’ that binds quarks and gluons to colorless hadrons (protons, neutrons,
pions, etc.) and hadrons to nuclei. The strong force is ∼ 100 times stronger than the
electromagnetic interaction, extremely short-ranged (the typical interaction range is
the size of a hadron ∼ 1 fm = 10−15 m), and its typical energy scale is the mass of the
proton ∼ 1 GeV.

The strong interaction is described by a local, non-Abelian SU(3)C gauge symmetry
with several peculiar features. While quarks and gluons are asymptotically free at short
distances, they are confined at large distances: only colorless bound states (hadrons)
can be detected in experiments, and no quark or gluon has ever been observed directly.
Nevertheless, nature has given us an abundance of evidence that these constituents ex-
ist, and their theoretical description in terms of a non-Abelian gauge theory has evolved
from being considered a mere mathematical trick to a quite fundamental framework.
In this chapter we will recapitulate the properties of QCD and its fundamental degrees
of freedom and postpone the discussion of hadrons to Chapter 2.

1.1 QCD Lagrangian

Field content. The definition of a quantum field theory starts with constructing its
Lagrangian L (or, equivalently, its action S =

∫
d4xL), based on the desired underly-

ing symmetries. The symmetries of QCD are: Poincaré invariance, local color gauge
invariance and various flavor symmetries, and the fields in the Lagrangian should trans-
form under representations of these groups. The QCD Lagrangian contains quark and
antiquark fields, and (as a consequence of color gauge invariance) gluon fields which
mediate the strong interaction:

ψα,i,f (x) , ψα,i,f (x) , Aµa(x) . (1.1)

The quark fields are Dirac spinors (index α) and transform under the fundamental
representation of SU(3)C (color index i = 1, 2, 3 or red, green blue). The additional
index f = 1 . . . NF labels the flavor quantum number (f = up, down, strange, charm,
bottom, top). The eight gluon fields Aµa(x) are Lorentz vectors; there is one field
for each generator ta of the group (a = 1 . . . 8). In the fundamental representation:
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ta = λa/2, where the λa are the eight Gell-Mann matrices; see Appendix A for a
collection of basic SU(N) relations. Gluons are flavor-blind and carry no flavor labels.

Gauge invariance. A free fermion Lagrangian ψ (i/∂ − m)ψ constructed from the
quark and antiquark fields (we leave the summation over Dirac, color and flavor indices
implicit) is invariant under global SU(3)C transformations

ψ′(x) = Uψ(x), ψ′(x) = ψ(x)U † with U = eiε = ei
∑
a εata , (1.2)

where the Uij act on the color indices of the quarks. This invariance is no longer sat-
isfied if we impose a local SU(3)C gauge symmetry ψ′(x) = U(x)ψ(x) with spacetime-
dependent group parameters εa(x). The mass term is still invariant, but the derivative
in the kinetic term acts now also on the spacetime argument of U(x), and invariance
of the Lagrangian (or the action) cannot be satisfied with an ordinary partial deriva-
tive. Hence, local color gauge invariance necessitates a covariant derivative and thus
introduces gluon fields:

Dµ = ∂µ − igAµ , (1.3)

where Aµ(x) =
∑
Aµa(x) ta is an element of the Lie algebra. From the new Lagrangian

ψ (i /D−m)ψ we see that Dµψ must transform in the same way as the quark field itself.
The required transformation property for the covariant derivative and the gluon field
reads:

ψ′ /D′ψ′
!

= ψ /Dψ ⇒ D′µ ψ
′ = UDµU

†ψ′ (1.4)

⇒ A′µ = UAµ U
† +

i

g
U(∂µU

†). (1.5)

The second term in A′µ is particular to local gauge transformations; for a global sym-
metry we don’t need a covariant derivative and could simply set Aµ = 0. Note that
we can generate gluon fields out of nothing (Aµ = 0) by a local gauge transformation:
such gauge fields ∼ U(∂µU

†) are called pure gauge configurations.

Gluon dynamics. Next, we need a kinetic term that describes the dynamics of the
gluons. We define the gluon field strength tensor as the commutator of two covariant
derivatives:

Fµν(x) =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig [Aµ, Aν ] ; (1.6)

it is therefore also an element of the algebra. It inherits the transformation properties
from (1.4): F ′µν = UFµνU

†. The contraction of two field-strength tensors is not gauge
invariant; only its color trace is invariant due to the cyclic property of the trace:

Tr
{
F ′µνF

′µν} = Tr
{
UFµνU

† UFµνU †
}

= Tr {FµνFµν} . (1.7)

Only the trace can therefore appear in the Lagrangian. We can write it as

Tr {FµνFµν} = F aµν F
µν
b Tr {ta tb} = T (R)F aµν F

µν
a , (1.8)

where T (R) = 1/2 in the fundamental representation of SU(N), cf. Appendix A. From
Eq. (1.5) we also conclude that a gluon mass term ∼ mg AµA

µ cannot appear in the
Lagrangian because it would violate gauge invariance: gluons must be massless.
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Figure 1.1: Tree-level propagators and interactions in the QCD action.

We can work out the components of the field-strength tensor as

Fµν = F aµν ta = ∂µA
a
ν ta − ∂νAaµ ta − ig AaµAbν [ta, tb]

=
(
∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν

)
ta ,

(1.9)

where we have used [ta, tb] = ifabc tc. Note that in an Abelian gauge theory such as QED
this commutator would vanish, leaving only the linear terms in the gluon fields. The
non-Abelian nature of SU(3)C induces gluonic self-interactions which lead to significant
complications. Inserting Eq. (1.9) into the term F aµν F

µν
a and partial integration yields,

up to surface terms in the action,

−1
4F

a
µν F

µν
a
∼= 1

2
Aaµ (� gµν − ∂µ∂ν)Aaν

− g

2
fabc (∂µAνa − ∂νAµa)AbµA

c
ν −

g2

4
fabefcdeA

µ
a A

ν
b A

c
µA

d
ν ,

(1.10)

from which the tree-level vertices can be read off. The first term ∼ A2 contains the
inverse gluon propagator; we see already that it is proportional to a transverse projector
in momentum space so we will have a problem with its inversion. The terms ∼ A3

constitute the three-gluon vertex and those proportional to A4 the four-gluon vertex.
Let’s consider the three-gluon vertex as an example: it must be Bose-symmetric; the

structure constant fabc is totally antisymmetric, and so the Lorentz remainder must
be antisymmetric as well. To obtain the tree-level vertex in momentum space, write
fabc = 1

3 (fabc + fbca + fcab) and rename color and Lorentz indices for the gluon fields
so that fabcA

a
µA

b
ν A

c
ρ can be pulled out. This yields for the second term in Eq. (1.10):

− ig
6
fabcA

a
µ(k1)Abν(k2)Acρ(k3)

[
(k1− k2)ρgµν + (k2− k3)µgνρ + (k3− k1)νgρµ

]
, (1.11)

with k1 + k2 + k3 = 0. The four-gluon vertex is obtained analogously. By exploit-
ing the Jacobi identity (A.3) for the structure constants, one arrives at the following
momentum-space representation of the last term in Eq. (1.10), with

∑
i ki = 0:

−g
2

24
Aaµ(k1)Abν(k2)Acρ(k3)Adσ(k4)

[
fabefcde (gµρgνσ − gνρgµσ)

+facefbde (gµνgρσ − gνρgµσ)

+fadefcbe (gµρgνσ − gµνgρσ)
]
.

(1.12)
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QCD action. The resulting QCD action has the most general form that is renormal-
izable, invariant under Poincaré transformations and local gauge transformations:

SQCD =

∫
d4xLQCD , LQCD = ψ(x) (i /D −M)ψ(x)− 1

4F
a
µν F

µν
a . (1.13)

Again the summation over the Dirac, color and flavor indices of the quarks is implicit.
M is the diagonal quark mass matrix to which we will return in a moment. Some
further remarks:

• Eq. (1.13) also conserves charge conjugation and parity.

• In principle, another gauge-invariant and renormalizable (but parity-violating)
term could appear in the Lagrangian, namely a topological charge density:

Q(x) =
g2

8π2
Tr
{
Fµν F̃

µν
}

with F̃µν =
1

2
εµναβFαβ , (1.14)

where F̃µν is the dual field strength tensor. Since this can be written as the di-
vergence of a current: Q = ∂µK

µ, it contributes only a surface term to the action
and in principle we could discard it (unless topological gauge field configurations
play a role). Eq. (1.14) violates parity and would give rise to an electric dipole
moment of the neutron, whose experimental upper limit is however tiny (which
leads to the strong CP problem).

• We could have defined the gluon fields so that they absorb the coupling constant g
(i.e., by replacing A→ A/g and F → F/g). From Eqs. (1.6), (1.10) and (1.13) we
see that the only place in the Lagrangian where the coupling would then appear
is in front of the gluon kinetic term, as a prefactor 1/g2. This shows that the sign
of g is physically irrelevant.

Quark masses and flavor structure. With regard to the flavor structure, we can
simply ignore the gluons since they are flavor independent. The quark-gluon interaction
is flavor-blind, and the distinction between different quarks comes only from their
masses. If the masses of all quark flavors were equal, the Lagrangian would exhibit an
additional SU(NF ) flavor symmetry. This is not realized in nature where we have

mu ∼ md ∼ 2 . . . 6 MeV, ms ∼ 100 MeV,
mc ∼ 1.3 GeV,
mb ∼ 4.2 GeV,
mt ∼ 173 GeV.

(1.15)

The origin of these discrepancies is still unclear and comes from the electroweak sector,
i.e., the Higgs mechanism. For our purposes, quark masses are an external input to
QCD. They enter the QCD Lagrangian through the diagonal quark mass matrix in
flavor space: M = diag(m1 . . .mNF ), which simply means that the flavor pieces in the
Lagrangian add up, for example: ψMψ =

∑
f mf ψf ψf . The flavor structure of the

Lagrangian is crucial for the properties of hadrons and we will return to it in Chapter 2.
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Infinitesimal gauge transformations. For later convenience it is useful to work
out the infinitesimal transformations of the fields. The covariant derivative as defined
in Eq. (1.3) acts on fields that transform under the fundamental representations of
SU(3)C , i.e., the group elements. When acting on elements of the algebra (those
containing the matrix generators ta, for example ε, Aµ or Fµν), we need an additional
commutator in its definition: Dµ = ∂µ − ig [Aµ, · ], or written in components:

(Dµε)
a = (∂µε− ig [Aµ, ε])

a = ∂µε
a − ig Acµ εb ifcba

= (∂µ δab − gfabcAcµ) εb = Dab
µ εb .

(1.16)

In the fundamental representation, the group generators are the Gell-Mann matrices; in
the adjoint representation they are given by tcab = −ifabc. Inserting this for Eq. (1.3), we
see that the inner bracket in the last equation is indeed the covariant derivative Dab

µ in
the adjoint representation. In an Abelian gauge theory such as QED, the commutator
vanishes and Dab

µ = ∂µ δab is the ordinary partial derivative.
The infinitesimal gauge transformation of the fields is then given by

ψ′ = Uψ ≈ (1 + iε)ψ ,

ψ′ = ψ U † ≈ ψ (1− iε) ,

A′µ = UAµU
† +

i

g
U(∂µU

†) ≈ Aµ + i [ε,Aµ] +
1

g
∂µε = Aµ +

1

g
Dµε ,

(1.17)

from which we obtain:

δψ = iε ψ , δψ = −iψ ε , δAµ =
1

g
Dµε , δFµν = i [ε, Fµν ] . (1.18)

Classical equations of motion. The classical Euler-Lagrange equations of motion
are obtained by taking functional derivatives of the classical QCD action S[A,ψ, ψ]
with respect to the fields. This yields the classical Yang-Mills equation for the gluon
fields,

δS

δAaν
=

∂L
∂Aaν

− ∂µ
∂L

∂(∂µAaν)
= 0 , (1.19)

and similarly for the quark fields ψ and ψ. While they are not directly relevant for our
purposes, they will later enter in the quantum equations of motion and conservation
laws. One arrives at the Dirac and Maxwell equations:

(i/∂ + g /A−M)ψ = 0 ,

ψ (i
←−
/∂ − g /A+ M) = 0 ,

Dν F
µν = g Jµ ,

Dν F̃
µν = 0 .

(1.20)

The equations for the gluon field-strength tensor are a direct generalization from elec-
trodynamics, where the covariant derivative in the adjoint representation would reduce
to the ordinary derivative. The current that appears on the right-hand side lives in the
Lie algebra: Jµ = Jµa ta with Jµa = ψ γµ ta ψ, and it is covariantly conserved: DµJ

µ = 0.

The last identity in Eq. (1.20), Dν F̃
µν = 0, is a consequence of the Bianchi identity

DνFαβ + DαFβν + DβFνα = 0, which in turn follows from the Jacobi identity of the
group generators, Eq. (A.3).


