
Chapter 2

Hadrons

In the last chapter we essentially ignored the flavor structure of QCD because it was
less relevant for the properties of quarks and gluons compared to their color structure.
Here we will turn the wheel around and focus exclusively on the flavor symmetries.
QCD’s local gauge symmetry doesn’t tell us much about the systematics of the hadron
spectrum other than their color-singlet nature. This allows us to construct qq̄ (mesons),
qqq (baryons), and in principle also more complicated states. On the other hand, the
global flavor symmetries of QCD become now important and introduce new effects
that are observable (or conspicuously missing) in the mass spectrum, for example: the
multiplet structure, spontaneous chiral symmetry breaking or the UA(1) anomaly.

2.1 Flavor symmetries and currents

Noether theorem. Any continuous (local or global) symmetry transformation which
leaves the action invariant implies the existence of a conserved current, where the cor-
responding charge is a constant of motion. Let’s exemplify the Noether theorem for
a generic field theory with action S =

∫
d4xL(ϕi, ∂µϕi). Consider a global trans-

formation ϕ′i = (eiεata)ij ϕj = ϕi + δϕi of the fields with generators ta, satisfying
[ta, tb] = ifabc tc. Compute the variation of the action with respect to the group pa-
rameter εa for solutions of the classical equations of motion:

δS =

∫

V

d4x δL =

∫

V

d4x
∑

i

[
∂L
∂ϕi

δϕi +
∂L

∂(∂µϕi)
δ(∂µϕi)

]

=

∫

V

d4x

[
∂µ

(∑

i

∂L
∂(∂µϕi)

δϕi

︸ ︷︷ ︸
=:−εa jµa

)
+
∑

i

(
∂L
∂ϕi
− ∂µ

∂L
∂(∂µϕi)︸ ︷︷ ︸

= 0 for classical solutions

)
δϕi

]
.

(2.1)

The second bracket vanishes for solutions of the Euler-Lagrange equations. Hence, if
the classical action is invariant, there is one conserved current for each generator of the
symmetry group when evaluated along the classical trajectories:

∂µ j
µ
a = − δL

δεa
= 0 . (2.2)
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We can further use Gauss’ law to convert the volume to a surface integral. As long as
the surface term at the spatial boundary is zero, this yields a conserved charge for each
generator ta of the symmetry group:

δS

δεa
= −

∫

∂V

dσµ j
µ
α = 0 ⇒ Qa(t) =

∫
d3x j0

a(x) = const. (2.3)

If the symmetry is broken classically and the action is not invariant, or if the fields
do not obey the equations of motion, we can still define currents and corresponding
charges but they will not be conserved.

When the classical field theory is quantized, the fields ϕi(x) and charges Qa(t)
become operators on the state space of the theory. It follows from the equal-time
(anti-) commutation relations of the fields that the charges satisfy the same commutator
relations as the generators of the symmetry group,

[Qa, Qb] = ifabcQc , (2.4)

and thereby form a representation of the Lie algebra on the Hilbert space, the so-called
charge algebra. This is true even if the charges are time-dependent, i.e., if the symmetry
is broken. The Heisenberg equations of motion,

dQa
dt

= i [HQCD, Qa] , (2.5)

which are are a consequence of translation invariance and hold for any polynomial of the
fields, then entail that QCD’s Hamiltonian commutes with the charges as long as they
are conserved. Hence, the eigenstates of the Hamiltonian with the same eigenvalue of
Qa are also mass-degenerate (if they share all other quantum numbers such as angular
momentum, parity etc. as well). The spectrum of the theory can then be labeled in
terms of the irreducible representations of the symmetry group.

There are also other possibilities how symmetries can be broken:

• Spontaneous symmetry breaking: This can happen when the dynamics of
the field contains (massless) long-range interactions. The classical action is still
invariant and the current is conserved, but the spatial integral and the charge
in Eq. (2.3) are then no longer well-defined. The vacuum, the quantum effec-
tive action and the Green functions of the theory do no longer share the global
symmetry of the Lagrangian. Each generator that does not leave the vacuum
invariant corresponds to a massless Goldstone boson. The QCD example is chiral
symmetry, or more precisely, the group SU(Nf )A for vanishing quark masses.

• Anomalous symmetry breaking: Here the classical action is again invariant,
but the symmetry is broken at the quantum level due to renormalization. This
can happen when no symmetry-preserving regulator exists. A typical candidate
are again chiral symmetries: in dimensional regularization, γ5 has no natural
extension to d 6= 4 dimensions; a Pauli-Villars regulator breaks chiral symmetry
explicitly due to a mass term, etc. In contrast to the case of spontaneous breaking,
also the current is no longer conserved but picks up additional terms. We already
mentioned the anomalous breaking of scale invariance; another example is the
U(1)A anomaly in QCD.
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Flavor Lagrangian. In order to discuss flavor symmetries, we only need to consider
the quark part of the QCD Lagrangian since only the quark fields carry flavor labels:

L = ψ (i/∂ −M)ψ + g ψ /Aψ . (2.6)

We will work with unrenormalized quantities for simplicity and discuss renormalization
when necessary. We will also suppress the color indices of the quarks from Eq. (1.1)
and denote the flavor indices instead by i = 1 . . . Nf . The spinor fields ψα,i(x), ψα,i(x)
transform under the fundamental representation of SU(Nf ):

ψ′(x) = Uψ(x), ψ′(x) = ψ(x)U † with U = ei
∑
a εata . (2.7)

The ta are now the SU(Nf ) generators, e.g., the Pauli matrices ta = τa/2 for two
flavors and Gell-Mann matrices ta = λa/2 for three flavors (see Appendix A). In the
two-flavor case, the quark mass matrix in the Lagrangian has the form

M =

(
mu 0
0 md

)
=
mu +md

2
1+ (mu −md) t3 , (2.8)

whereas in the three-flavor case it is given by M = diag(mu,md,ms) or

M =
mu +md +ms

3
1+ (mu −md) t3 +

mu +md − 2ms√
3

t8 . (2.9)

Flavor symmetries. We are interested in the properties of the Lagrangian under the
global transformations U(1)V × SU(Nf )V × SU(Nf )A × U(1)A of the quark fields:

SU(Nf )V 3 ei
∑
a εata ⇒ δψ

δεa
= taiψ ,

δψ

δεa
= −iψ ta , (2.10)

SU(Nf )A 3 eiγ5
∑
a εata ⇒ δψ

δεa
= γ5 taiψ ,

δψ

δεa
= iψ γ5 ta . (2.11)

The subscripts V and A indicate that these transformations will induce vector and
axialvector currents. For the corresponding flavor-singlet transformations eiε ∈ U(1)V
and eiγ5ε ∈ U(1)A, where ε is now just a number, the variations of the fields are
obtained by replacing ta → 1. Notice the positive sign for the δψ terms in the axial
case which follows from the anticommutation of γ5 and γ0 in obtaining ψ = ψ†γ0. We
will also make frequent use of the following quark bilinears:

jΓ
a (x) := ψ(x) Γ ta ψ(x) , jΓ(x) := ψ(x) Γψ(x) , (2.12)

where Γ ∈ {γµ, γµγ5, 1, iγ5} are vector, axialvector, scalar and pseudoscalar Dirac
matrices. We denote the corresponding (Hermitian) vector, axialvector, scalar and
pseudoscalar currents jΓ

(a)(x) by 1

γµ → V µ
(a)(x), γµγ5 → Aµ(a)(x), 1→ S(a)(x), iγ5 → P(a)(x). (2.13)

In the following we’ll investigate these symmetry transformations in detail.

1Here’s a clash of notation: Aµ denotes both the axialvector current and the gluon field. Fortunately
we won’t be dealing with gluons for a while, and if so we will use the gluon field-strength tensor Fµν

instead. Unless stated otherwise, Aµ will refer to an axialvector current from now on.
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U(1)V : The Lagrangian is invariant under a global phase transformation ψ′ = eiεψ.
The corresponding flavor-singlet vector current according to Eq. (2.1) is

V µ = −
[

∂L
∂(∂µψα,i)

δψα,i
δε

+
∂L

∂(∂µψα,i)

δψα,i
δε

]
= ψ γµ ψ , (2.14)

where we used
∂L

∂(∂µψ)
= iψ γµ ,

∂L
∂(∂µψ)

= 0 . (2.15)

Current conservation ∂µ V
µ = 0 can be verified by inserting the solutions of the classical

Dirac equations of motion from Eq. (1.20):

/∂ ψ = (g /A−M) iψ , ψ
←−
/∂ = iψ (−g /A+ M) . (2.16)

The conserved charge is

QV (t) =

∫
d3xψ γ0 ψ =

∫
d3xψ† ψ = const. (2.17)

and reflects fermion number conservation, since it counts the number of quarks minus
antiquarks in the state. If we define nq = (#q) − (#q̄) for each flavor, then the
eigenvalue of QV (which we also call QV ) is the baryon number. For three flavors:

B :=
QV

3
=
nu + nd + ns

3
, (2.18)

and the U(1)V symmetry entails baryon number conservation.

SU(Nf )V : is explicitly broken by the mass matrix M 6= m1. We can still write down
the currents, one for each generator of the group, and compute their divergence:

V µ
a = ψ γµ ta ψ , ∂µ V

µ
a = iψ [M, ta]ψ . (2.19)

The Lagrangian is invariant only if all quark masses are identical; the (N2
f − 1) vector

currents are then conserved: ∂µ V
µ
a = 0, and so are the corresponding charges:

QVa (t) =

∫
d3xψ† ta ψ = const. (2.20)

Because the diagonal generators (t3 in the two-flavor and t3, t8 in the three-flavor
case) commute with each other and hence also with the mass matrix, their currents are
conserved even if M 6= m1. They define the isospin and hypercharge currents:

V µ
3 = ψ γµ t3 ψ =

1

2

(
ūγµu− d̄γµd

)
,

V µ
8 = ψ γµ t8 ψ =

1

2
√

3

(
ūγµu+ d̄γµd− 2s̄γµs

)
,

(2.21)

and their conserved charges define the third component of the isospin I3 = QV3 and the
hypercharge Y = (2/

√
3)QV8 . Conservation of V µ

3 , V µ
8 and V µ from Eq. (2.14) entails
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that the flavor-diagonal vector currents ū γµu, d̄ γµd and s̄ γµs are always conserved
which reflects flavor conservation in QCD. From the eigenvalues of B, I3 = (nu−nd)/2
and Y = (nu + nd − 2ns)/3 we obtain

Y = B + S , Q = I3 +
Y

2
=

2

3
nu −

1

3
nd −

1

3
ns , (2.22)

where S = −ns is the strangeness and Q the charge of the state. This will allow us
to arrange hadrons into {I3, S} multiplets even if the underlying flavor symmetry is
broken. The remaining flavor-changing vector currents have divergences proportional
to quark-mass differences; if we go back to the two-flavor case with mu 6= md and use
instead of t1,2 = τ1,2/2 the generators

t+ = t1 + it2 =

(
0 1
0 0

)
, t− = t1 − it2 =

(
0 0
1 0

)
, (2.23)

we obtain
∂µV

µ
+ = i(mu −md) ūd , ∂µV

µ
− = −i(mu −md) d̄u . (2.24)

SU(Nf )A : is explicitly broken by the mass matrix M 6= 0:

Aµa = ψ γµγ5 ta ψ , ∂µA
µ
a = iψ {M, ta} γ5 ψ . (2.25)

Even if all quark masses are equal, there remains a non-zero contribution proportional
to the quark mass:

∂µA
µ
a = 2mψ iγ5 taψ = 2mPa . (2.26)

This is the PCAC (partially conserved axialvector current) relation: the divergence of
the axialvector current is a pseudoscalar density. This equation will become extremely
useful later. Using (2.23) in the two-flavor case, we obtain

∂µA
µ
+ = i(mu +md) ūγ5d ,

∂µA
µ
− = i(mu +md) d̄γ5u ,

∂µA
µ
3 = imu ūγ5u− imd d̄γ5d ,

(2.27)

which are the creation operators for the three pions π+, π− and π0.
On the other hand, Eq. (2.25) entails that the axial currents are conserved in the

chiral limit where all quark masses go to zero: ∂µA
µ
a = 0. Then also all axial charges

are conserved:

QAa (t) =

∫
d3xψ†γ5 ta ψ = const. (2.28)

Since the vector currents are conserved as well in that case, we have an enlarged flavor
symmetry SU(Nf )V × SU(Nf )A ' SU(Nf )L × SU(Nf )R, namely chiral symmetry. It
will turn out that the SU(Nf )A part of chiral symmetry is spontaneously broken at
the quantum level; nevertheless all relations for the currents remain valid.

U(1)A : is classically conserved for M = 0, but not preserved after quantization which
leads to the U(1)A anomaly. The divergence of the axialvector singlet current picks up
an anomalous contribution whose origin and consequences we will discuss later:

Aµ = ψ γµγ5 ψ , ∂µA
µ = 2i ψM γ5 ψ +

g2Nf

32π2
F̃µνa F aµν . (2.29)
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Chiral symmetry. The enlarged SU(Nf )V × SU(Nf )A symmetry in the limit of
vanishing quark masses is equivalent to a chiral symmetry SU(Nf )L × SU(Nf )R. To
see this, define the chiral projectors

P± :=
1

2
(1± γ5) ⇒ Pω = P†ω,

∑

ω

Pω = 1, P2
ω = Pω, Pω P−ω = 0 . (2.30)

Chirality is here denoted by the index + (right-handed) or − (left-handed). The pro-
jectors can be used to define right- and left-handed spinors:

ψω = Pω ψ , ψω = ψ P−ω , (2.31)

where we used the property Pω = γ0 P
†
ωγ0 = P−ω. Because of P−ω γ

µ = γµ Pω, the
Lagrangian (2.6) in the massless case decouples in a left-handed and right-handed part:

L = ψ i /Dψ =
∑

ω

ψω i /Dψω . (2.32)

It is invariant under separate SU(Nf )×SU(Nf ) transformations of the left- and right-
handed spinors, with independent group parameters ε+

a and ε−a :

ψ′ω = Uω ψω , Uω = ei
∑
a ε

ω
a ta , U †ω = U−1

ω = Uω . (2.33)

For example, ψ+ transforms under the fundamental representation of the right-handed
SU(Nf ) but as a singlet with respect to the left-handed one.

Let’s see how general Dirac matrices transform under chiral symmetry. There are
two possible cases:

(1) Γ = γµ, γµγ5 ⇒ Pω ΓPω = 0,

ψ−ω Γψω = 0
⇒ ψ Γψ =

∑

ω

ψω Γψω , (2.34)

(2) Γ = 1, γ5, σ
µν ⇒ P−ω ΓPω = 0,

ψω Γψω = 0
⇒ ψ Γψ =

∑

ω

ψ−ω Γψω . (2.35)

The elements in the first row lead to chirally symmetric terms in the Lagrangian:
∑

ω

ψ′ω Γψ′ω =
∑

ω

ψω U
†
ω ΓUω ψω =

∑

ω

ψω Γψω ; (2.36)

but those in the second do not because U †−ω Uω 6= 1. For example, the kinetic term
ψ i/∂ ψ is chirally invariant whereas a quark mass term ∼ m1 breaks chiral symmetry
explicitly since it mixes right- and left-handed components.

Away from the chiral limit we can write the general Lagrangian (2.6) as

L =
∑

ω

(
ψω i/∂ ψω − ψ−ωMψω

)
. (2.37)

From the global SU(Nf )×SU(Nf ) transformations we can define 2×(N2
f −1) currents,

which are however not conserved because the mass term mixes right- and left-handed
quarks. Inserting the Dirac equations for ψω and ψω, their divergences are obtained as

jµa,ω = ψωγ
µ ta ψω , ∂µ j

µ
a,ω = i

(
ψ−ωMta ψω − ψω taMψ−ω

)
. (2.38)
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In the chiral limit this leads to 2× (N2
f − 1) conserved chiral currents and charges:

jµa,ω = ψωγ
µ ta ψω , ∂µ j

µ
a,ω = 0 , Qa,ω =

∫
d3xψ†ω ta ψω . (2.39)

The vector and axialvector currents from Eqs. (2.19) and (2.25) and corresponding
charges are linear combinations of the left- and right-handed currents and charges:

V µ
a = jµa,+ + jµa,− ,

Aµa = jµa,+ − jµa,− ,
QVa = Qa+ +Qa− ,

QAa = Qa+ −Qa− .
(2.40)

Charge and current algebra. We will often need equal-time commutation relations
for the currents in (2.12)–(2.13). Using the identity

[AB,CD] = A {B,C}D − C {A,D}B − {A,C} [B,D] + [A,C] {B,D}
2

(2.41)

together with the anticommutation relations (1.57) for the quark fields, and the (anti-)
commutation relations (A.2) and (A.7) for the SU(N) generators, it is easy to derive
the generic relations

[
jΓ
a (x), jΓ′

b (y)
]
x0=y0

=

[
ifabc j

Γ+
c (x) + dabc j

Γ−
c (x) +

δab
N

jΓ−(x)

]
δ3(x− y),

[
jΓ
a (x), jΓ′(y)

]
x0=y0

= 2jΓ−
a (x) δ3(x− y) ,

(2.42)

where Γ± := 1
2 (Γγ0 Γ′±Γ′γ0 Γ). They are valid independently of whether the currents

are conserved or not.2 For example, with Γ, Γ′ ∈ {γ0, γ0γ5} we arrive at

[V 0
a (x), V 0

b (y)]x0=y0 = ifabc V
0
c (x) δ3(x− y) ,

[V 0
a (x), A0

b(y)]x0=y0 = ifabcA
0
c(x) δ3(x− y) ,

[A0
a(x), A0

b(y)]x0=y0 = ifabc V
0
c (x) δ3(x− y) .

(2.43)

Hence, V 0
a and A0

a form a closed algebra since they obey equal-time commutation re-
lations with the structure constants of the Lie algebra, and the Dirac δ−functions
additionally ensure that all commutators vanish for x 6= y. This is the so-called local
current algebra. If we further integrate over

∫
d3x and

∫
d3y, we obtain the correspond-

ing charge algebra on the Hilbert space:

[QVa , Q
V
b ] = [QAa , Q

A
b ] = ifabcQ

V
c , [QVa , Q

A
b ] = ifabcQ

A
c . (2.44)

Actually, since the SU(Nf )A symmetry is spontaneously broken in the chiral limit, the
axial charges are not rigorously defined; it is then more practical to work directly with
the time components of the currents. Using Eq. (2.42) together with Γ = γ0γ5 and
Γ′ = iγ5, we obtain Γ+ = 0 and Γ− = −i and therefore

[
QAa , Pb(x)

]
= −i

[
dabc Sc(x) +

δab
N

S(x)

]
, (2.45)

2We ignore possible ambiguities due to Schwinger terms, see for example Itzykson-Zuber (p.530)
and Pokorski (p.348) for discussions.
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Figure 2.1: Quark propagator and three-point function in Eqs. (2.48) and (2.49).

where S(x) = ψ(x)ψ(x) is the scalar density defined via Eqs. (2.12)–(2.13). Its vacuum
expectation value is the scalar quark condensate which will turn out to be nonvanishing
due to spontaneous chiral symmetry breaking, and we will use this relation later for
proving Goldstone’s theorem and deriving the Gell-Mann-Oakes-Renner relation.

Using the relation [AB,C] = A {B,C} − {A,C}B, we can similarly obtain the
commutation relations of the currents with the quark fields:

[
jΓ
a (x), ψ(y)

]
x0=y0

= −
(
ta γ

0 Γψ(x)
)
δ3(x− y),

[
jΓ
a (x), ψ(y)

]
x0=y0

=
(
ψ(x) Γ γ0 ta

)
δ3(x− y) .

(2.46)

If we integrate over
∫
d3x, we get the commutation relations of the charges with the

fields, for example for the vector currents (Γ = γµ):

[
QVa (x0), ψ(x)

]
= −ta ψ(x) ,

[
QVa (x0), ψ(x)

]
= ψ(x) ta . (2.47)

They tell us once again that the charges are the infinitesimal generators of the symmetry
group when acting on the Hilbert space.

Ward-Takahashi identities. At the level of Green functions, current conservation is
manifest via Ward-Takahashi identities (WTIs) which are symmetry relations between
the n−point and (n+ 1)−point functions. Take for example the quark propagator,

Sαβ(x1, x2) = 〈0|Tψα(x1)ψβ(x2) |0〉. (2.48)

How the quark couples to a vector, axialvector, scalar or pseudoscalar current (e.g.
photons, Z−bosons, pions, . . . ) is encoded in the three-point function

(GΓ)a,αβ(x, x1, x2) := 〈0|T jΓ
a (x)ψα(x1)ψβ(x2)|0〉 , (2.49)

with jΓ ∈ {V µ, Aµ, S, P}, see Fig. 2.1. In the vector and axialvector case, these two
quantities are related by a Ward-Takahashi identity which we now want to establish.
Consider two generic field operators jµ(x), ϕ(y) at different spacetime points. The
divergence of their time-ordered product with respect to x is:

∂xµ
(
T jµ(x)ϕ(y)

)
= ∂xµ

(
Θ(x0 − y0) jµ(x)ϕ(y) + Θ(y0 − x0)ϕ(y) jµ(x)

)

= T
(
∂µ j

µ(x)
)
ϕ(y) + δ(x0 − y0)

[
j0(x), ϕ(y)

]
.

(2.50)
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Figure 2.2: Generic form of a Ward-Takahashi identity from Eq. (2.52).

The first term comes from the derivative of jµ(x) (simply resum the time orderings)
and the second one results from differentiating the step functions:

∂xµ Θ(x0 − y0) = −∂xµ Θ(y0 − x0) = δ(x0 − y0) δ0µ . (2.51)

Eq. (2.50) is quite general and retains its structure for products of n different fields
(which can also be fermionic). In the general case one has to write down all possible
time orderings; the time-ordering of n + 1 distinct space-time points leads to (n+ 1)!
terms, each of which includes products of n step functions. If fermion fields are in-
volved, the individual time-ordered terms will pick up minus signs arising from the
anticommutativity. In either case, the final result is

∂xµ
(
T jµ(x)ϕ1(x1) . . . ϕn(xn)

)
= T

(
∂µ j

µ(x)
)
ϕ1(x1) . . . ϕn(xn)

+

n∑

k=1

δ(x0 − x0
k)Tϕ1(x1) . . .

[
j0(x), ϕk(xk)

]
. . . ϕn(xn) .

(2.52)

If we take its vacuum expectation value, it relates the (n+1)−point function, where one
leg corresponds to the external current, to the n−point functions since the commutators
in the second row will be proportional to the fields, cf. (2.46). This is the generic
form of a Ward-Takahashi identity, illustrated in Fig. 2.2. Current conservation (or
its absence) enters only in the first term on the right-hand side which vanishes if the
current is conserved.

Let’s work out this formula for the three-point function in Eq. (2.49):

∂xµ G
µ
Γ(x, x1, x2) = 〈0|T (∂µ j

µ(x)) ψ(x1)ψ(x2) |0〉
+ δ(x0 − x0

1)〈0|T
[
j0(x), ψ(x1)

]
ψ(x2) |0〉

+ δ(x0 − x0
2)〈0|Tψ(x1)

[
j0(x), ψ(x2)

]
|0〉 .

(2.53)

For each type of current we insert the respective result from Eq. (2.46). If we use vector
current conservation (for equal quark masses) and the PCAC relation, we obtain the
vector and axialvector WTIs:

∂xµ G
µ
V (x, x1, x2) = −δ4(x− x1) ta S(x1, x2) + δ4(x− x2)S(x1, x2) ta , (2.54)

∂xµ G
µ
A(x, x1, x2) = 2mGP (x, x1, x2)

− δ4(x− x1) γ5 ta S(x1, x2)− δ4(x− x2)S(x1, x2) ta γ5 , (2.55)
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where the generator ta acts on the flavor index of ψ in the first term and ψ in the
second. In momentum space, the derivative with respect to x becomes a contraction
with the external momentum Q = p1 − p2:

iQµGµV (p1, p2) = −S(p1) + S(p2) ,

iQµGµA(p1, p2) = 2mGP (p1, p2)− γ5 S(p1)− S(p2) γ5 ,
(2.56)

where we suppressed the generators for simplicity. The first equation can be solved
to obtain the most general vertex that is compatible with vector current conservation
(the so-called Ball-Chiu vertex ), apart from further transverse terms with respect to
the external momentum.3 The axialvector WTI relates the longitudinal part of the
axialvector vertex with the pseudoscalar vertex and the quark propagator. Here we
have considered only the flavor-octet current Aµa ; in the flavor-singlet channel we would
have an additional term from the anomaly.

WTIs from the generating functional. In principle, WTIs can also be derived
from the generating functional via Eq. (1.74). The prototype is the local U(1) gauge
invariance in QED. The QED path integral has the same form as in QCD,

Z[J, η, η ] =

∫
D[A,ψ, ψ ] ei(S[A,ψ, ψ ]+SGF[A ]+SC), (2.57)

with the exception that there are no ghosts (because the Faddeev-Popov determinant
is independent of the photon field Aµ and can be pulled out of the path integral), and
instead of the non-Abelian SU(3)C symmetry we have only a phase U(x) = eiε(x). A
gauge transformation is just a relabeling of fields under the integral (if we keep the
sources fixed) and thereby leaves the generating functional invariant. Since the QED
action is gauge invariant, and assuming that the integral measure remains invariant as
well, this will only affect the gauge-fixing and source terms:

SGF + SC =

∫
d4x

[
1

2ξ
Aµ∂µ∂νA

ν − JµAµ − ψ η − η ψ
]
. (2.58)

Hence, if we insert δψ = iεψ, δψ = −iεψ, δAµ = 1
g ∂

µε and perform partial integrations
to factor out ε(x), we obtain

〈 δSGF + δSC 〉J =

∫
d4x ε(x)

〈
1

g
∂µ

(
Jµ − 1

ξ
�Aµ

)
+ i
(
ψ η − η ψ

)〉

J

= 0 . (2.59)

Since ε(x) is arbitrary, the integrand must vanish as well, so that we arrive at

∂µ

(
Jµ − 1

ξ
� 〈Aµ〉J

)
+ ig

(
〈ψ〉J η − η 〈ψ〉J

)
= 0 . (2.60)

We can now use Eq. (1.46) to replace 〈Aµ〉J , 〈ψ〉J and 〈ψ〉J by the field expectation
values (we omit the tilde), and Eq. (1.42) to replace the currents by the derivative of
the effective action with respect to the fields: J = δΓ/δA, η = δΓ/δψ, η = −δΓ/δψ.

3Note that all quantities in these equations are connected Green functions; one can get their 1PI
analogues simply by multiplying both equations with inverse quark propagators from the left and right.
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Further field derivatives yield the Ward-Takahashi identities for the 1PI Green func-
tions. For example, after applying two derivatives with respect to ψ and ψ one arrives
at the WTI for the quark-photon vertex which is similar to that in Eq. (2.54). (It must
be, since the photon is also a vector field).

Background fields. Now what if we are instead interested in global flavor symmetries?
Let’s check first the QED case with a global U(1) symmetry instead of a local one. In
that case, δAµ = 0, and since ε is a constant, we can no longer eliminate the integral
in Eq. (2.59) but get instead:

〈 δSGF + δSC 〉J = iε

∫
d4x

〈
ψ η − η ψ

〉
J

= 0 . (2.61)

This equation is correct but not very useful. In the context of Eq. (2.54) it only tells
us that the integrated equation vanishes – or in momentum space, that the difference
of propagators on the right-hand side vanishes if their momenta are equal (Qµ = 0).

We can cure the problem by tricking the path integral into believing that it deals
with a local symmetry instead of a global one. Suppose we start from the free quark
Lagrangian in Eq. (2.6). Let’s omit the quark-gluon vertex because it is not relevant
for the discussion:

L = ψ (i/∂ −m)ψ , Z[ η, η ] =

∫
D[ψ,ψ ] ei(S[ψ,ψ ]+SC). (2.62)

The action S[ψ, ψ ] is invariant under the global SU(Nf )V ×U(1)V symmetry; we con-
sider U(1)V for simplicity. Its flavor-singlet current V µ = ψ γµ ψ is conserved. The
idea is now to add source terms to the action and define appropriate gauge transforma-
tions for the source fields, so that the total action including all sources becomes locally
gauge invariant with respect to U(1)V . This means we need a covariant derivative;
from Eq. (2.62) we only need to add a term ψ /B ψ = V ·B to establish local U(1) gauge
invariance:

Z[B, η, η ] =

∫
D[ψ,ψ ] ei(S[ψ,ψ ]+V ·B+SC). (2.63)

Hence, B plays the role of the gauge field, but it is a ’background’ field since it doesn’t
appear in the path integral measure: it doesn’t change the content of the quantum field
theory. From Eq. (1.18) we have δBµ = ∂µε because we are dealing with an Abelian
gauge symmetry (we set the irrelevant new coupling to 1). We can make the source
term gauge invariant in itself by demanding that δη = iε η and δη = −iε η.

Now start from Z[B′, η′, η′ ], relabel the fields in the path integral ψ, ψ → ψ′, ψ′,
and perform a gauge transformation back to unprimed quantities. The total action is
invariant and the path integral measure as well, so that also the partition function is
invariant under a change of B, η, η. This leads to the condition
∫
d4x

〈
V ·δB−ψ δη−δη ψ

〉
J

=

∫
d4x

[
〈V µ〉J ∂µε− iε

(
〈ψ〉J η − η 〈ψ〉J

)]
= 0 . (2.64)

In order to arrive at Eq. (2.54) including connected Green functions, replace

〈V µ〉J = − δW
δBµ

, 〈ψ〉J = −δW
δη

, 〈ψ〉J =
δW

δη
, (2.65)
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and perform a partial integration. Since ε(x) is again arbitrary one can remove the
integral, and the resulting master WTI becomes

∂µ
δW

δBµ
= i

(
δW

δη
η + η

δW

δη

)
. (2.66)

It has the same form as in our first attempt (2.61) except that we have now a new
Green function δW/δB that incorporates the current. The vector WTI (2.54) follows
from applying two further derivatives with respect to η and η and setting the sources
to zero.

Renormalization of currents. So far we have only dealt with bare currents that
we derived from the bare Lagrangian (2.6). However, if we included renormalization
constants for the vector and axialvector currents, the current-algebra relations (2.43)
would fix both of them to Z2 = Z = 1. Hence, these currents stay unrenormalized,
which entails

V µ
B = (ψ γµ ψ)B = Z2 (ψ γµ ψ)R = V µ

R ,

AµB = (ψ γµγ5 ψ)B = Z2 (ψ γµγ5 ψ)R = AµR .
(2.67)

On the other hand, those relations do not give us closed equations for the scalar and
pseudoscalar densities. In that case we can exploit the fact that their divergences are
proportional to the quark masses, e.g., from the PCAC relation:

∂µA
µ
B = (2mP )B

!
= (2mP )R = ∂µA

µ
R ⇒ PB =

1

Zm
PR , (2.68)

and consequently

PB = (ψγ5ψ)B = Z2 (ψγ5ψ)R =
1

Zm
PR . (2.69)

The same result follows for the scalar density. In summary, the renormalized currents
are (we drop the label ’R’):

V µ = Z2 ψ γ
µψ , Aµ = Z2 ψ γ

µγ5 ψ , P = Z2Zm ψγ5ψ , S = Z2Zm ψψ . (2.70)


