
50 Hadrons

2.2 Hadrons, poles and decay constants

We have mentioned the implications of various symmetry relations for hadrons, but we
have not yet developed the tools to actually extract hadron properties from QCD. In
principle, hadrons are contained in the state space of QCD. A self-adjoint Hamiltonian
has a complete set of orthogonal eigenstates which we will call |λ〉; they carry momenta p
plus further quantum numbers that reflect the symmetries of QCD (angular momentum,
parity, flavor, etc.). Their completeness relation is

1 =
∑

λ

1

(2π)3

∫
d4p θ(p0) δ(p2 −m2

λ) |λ〉〈λ| =
∑

λ

1

(2π)3

∫
d3p

2Ep
|λ〉〈λ| , (2.71)

where the Lorentz-invariant integral weight implements the condition that each hadron
is on its mass shell (p2 = m2

λ, or E2
p = p2 + m2

λ). You might understandably feel a
bit uncomfortable with all this: in principle, the state space can contain (unphysical)
colored states, colorless ’one-particle’ bound states like mesons and baryons, but also
glueballs, multiquark and multi-hadron states – also the C14 nucleus should be some-
where buried in the QCD state space. We will only be interested in qq̄ and qqq color
singlets, but whenever you encounter a sum over λ, keep in mind that the actual Fock
space of QCD is enormous.

Hadrons generate poles. A useful way to extract hadron properties, which is also
closely related to the experimental situation, is based on the fact that hadrons produce
poles in QCD’s Green functions, and hence in scattering amplitudes and cross sections.
The starting point is the Källén-Lehmann spectral representation which is usually de-
rived for the propagator of a theory. Inserting the completeness relation (2.71) between
the two field operators that appear in the propagator’s time-ordered vacuum expecta-
tion value yields a single-particle pole at p2 = m2

λ, and in principle also a multi-particle
continuum with branch cuts that start at p2 = 4m2

λ and extend to infinity. This prop-
erty will, however, not hold in QCD because such states would carry color. Since quarks
transform under the fundamental triplet representation of SU(3)C , a single quark field
operator cannot create colorless states, and one has to make sure somehow that those
are indeed absent from the physical state space. In fact, the absence of a Källén-
Lehmann representation can be used as a criterion for confinement: the elementary
quark and gluon propagators should not have timelike particle poles.

On the other hand, bound states are color singlets and can appear as poles in higher
n−point functions, which allows us to derive a spectral representation for those. Take
for example the quark four-point function

Gαβγδ(x1, x2, x3, x4) = 〈0|Tψα(x1)ψβ(x2)ψγ(x3)ψδ(x4)|0〉 . (2.72)

Inserting a complete set of states will produce bound-state poles because a composite
operator ψψ can produce color singlet quantum numbers (3 ⊗ 3̄ = 1 ⊕ 8). Instead of
working with the four-point function directly, we can simplify the problem by setting
x1 = x2 and x3 = x4 and contracting the resulting quark pairs with Dirac and flavor
matrices ta Γβα Γ′δγ tb from Eq. (2.12). Then we obtain current correlators of the form

〈0|TPa(x)Pb(y)|0〉 , 〈0|TV µ
a (x)V ν

b (y)|0〉 , 〈0|TAµa(x)Aνb (y)|0〉 , etc. (2.73)
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Figure 2.3: Quark four-point function (2.72) and its various Dirac-flavor contractions, and
their separability at a given meson pole from the spectral representation. Second row: current
correlators in (2.73), third row: vertices from (2.49). The symbol ⊗ represents a Dirac-flavor
matrix Γ ta. The highlighted quantities are the bound-state wave function (2.74) and the decay
constants from Eq. (2.78). The dashed lines are Feynman propagators.

These are again two-point functions and can be viewed as effective meson propagators
since they contain the composite fields Pa, V

µ
a , Aµa , etc. This is also a convenient way

to filter the overwhelming information from the state space, because poles will only
emerge from those states which coincide with the quantum numbers of the currents.
Another advantage is that the Green functions in (2.73) are already gauge-invariant (in
contrast to the four-point function) since they contain gauge-invariant, local products
of quark fields. This is the strategy that is usually pursued in lattice calculations, since
the properties of such correlators at the pole (in coordinate space: the large Euclidean
time behavior) can be calculated directly from the QCD partition function.

Bound-state wave function. Let’s work this out in more detail. So far we have only
looked at vacuum-to-vacuum transition matrix elements of time-ordered operators, i.e.,
the Green functions of the theory. Now we introduce transition elements between the
vacuum and a hadron with momentum p, which define a hadron’s bound-state (or
Bethe-Salpeter) wave function:

χaαβ(x1, x2, p) := 〈0|Tψα(x1)ψβ(x2) |λa〉 . (2.74)

Since this quantity contains a quark and antiquark field it corresponds to a meson; we
could also write down the analogue for baryons with three quark fields. The hadron’s
total momentum is onshell (p2 = m2

λ) and all other quantum numbers are fixed.
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Translation invariance entails that a usual vacuum-to-vacuum transition amplitude
can only depend on the relative coordinate z := x1 − x2 but not on the total position
x := (x1 + x2)/2. For a vacuum-to-hadron amplitude as in Eq. (2.74), it means that
the dependence on x can only enter through a phase (cf. Eq. (B.71) in the Appendix):

χaαβ(x1, x2, p) = 〈0|Tψα
(
z
2

)
ψβ
(
− z2
)
|λa〉 e−ip·x = χaαβ(z, p) e−ip·x . (2.75)

To see this, use x1 = x+ z
2 , x2 = x− z

2 and insert the behavior of field operators and
one-particle states under a Poincaré transformation U(Λ, a) which is a pure translation:

U(1, a)ψα(x)U(1, a)−1 = ψα(x+ a) , U(1, a) |λ(p)〉 = eip·a |λ(p)〉 , (2.76)

and use translation invariance of the vacuum: U(1, a) |0〉 = |0〉.

Decay constants. We can extract gauge-invariant quantities from the bound-state
wave function by setting z = 0 (in momentum space, this means integration over the
relative momentum) and contracting it with some Dirac-flavor structure Γ ta. This
yields the vacuum-to-hadron transition element of the corresponding current:

− Γβα ta χ
b
αβ(x, x, p) = 〈0| jΓ

a (x) |λb〉 = 〈0| jΓ
a (0) |λb〉 e−ip·x . (2.77)

Take for example Γ = γµγ5 and iγ5 which produce axialvector and pseudoscalar cur-
rents. This restricts the possibilities for |λa〉 to pseudoscalar and axialvector mesons;
for the moment we will consider pseudoscalars only. Since we also take the flavor trace
of two generators, the only possible structure in flavor space is ∼ δab, cf. (A.6):

〈0|Aµa(x) |λb〉 = δab ip
µfλ e

−ip·x, 〈0|Pa(x) |λb〉 = δab rλ e
−ip·x. (2.78)

The first quantity encodes the transition from a pseudoscalar meson to an axialvector
current. Since the pion (λ = π) decays weakly into leptons (π+ → W+ → µ+ + νµ),
it defines the pion’s electroweak decay constant fπ. Its generic structure arises from
the fact that the quantity is a Lorentz vector whose only possible tensor structure is
pµ, and the pion decay constant can in principle depend on the Lorentz-invariant p2

but p2 = m2
π is fixed. The pseudoscalar analogue rλ is not directly measurable but will

be useful in the following. If we now apply the PCAC relation (2.26) for equal quark
masses, we immediately obtain

fλm
2
λ = 2mrλ , (2.79)

which is valid for all flavor non-singlet pseudoscalar mesons. (In the singlet case, there
would be an additional term from the anomaly.) For example, it relates the pion decay
constant and pion mass with the pseudoscalar transition matrix element rπ. This
already resembles the Gell-Mann-Oakes-Renner (GMOR) relation, but so far we know
nothing about spontaneous chiral symmetry breaking! At this point, the equation only
tells us that in the chiral limit (m = 0) either fλ = 0 or mλ = 0.4

4In Sec. 2.4 we will prove the Goldstone theorem and derive the GMOR relation. The essence of
the proof is to show that the pion decay constant does not vanish in the chiral limit (as a consequence
of spontaneous chiral symmetry breaking), and therefore mπ = 0.
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With the same reasoning, Lorentz covariance and parity invariance also settle the
general structure of a pseudoscalar-meson wave function in momentum space:

χa(q, p) = iγ5 (h1 + h2 /p + h3 q/⊥ + h4 [q/, /p]) ta. (2.80)

Here p = p1 − p2 is the total momentum and q = (p1 + p2)/2 the relative momen-
tum. The hi(q

2, q · p, p2) are Lorentz-invariant functions of all invariant momentum
variables. q⊥ is orthogonalized with respect to p so that all four tensor structures are
orthogonal to each other when taking the Dirac trace. As a consequence, only h1 and
h2 survive when we integrate over the relative momentum q. In order to get (2.78), we
would integrate over q (in coordinate space, we set z = 0) and take the trace with γµγ5

and iγ5, which projects out h2 and h1, respectively. Hence, even if the wave function
itself is gauge and renormalization-point dependent, the integrated dressing functions
rλ ∼

∫
d4q h1 and fλ ∼

∫
d4q h2 carry gauge-invariant and renormalization-point inde-

pendent information.5

Current correlators. Consider now the pseudoscalar correlator in Eq. (2.73); we
want to show that each bound state generates a pole in this Green function. Let’s
write the time orderings explicitly:

〈0|TPa(x)Pb(y)|0〉 = Θ(x0 − y0) 〈0|Pa(x)Pb(y) |0〉
+ Θ(y0 − x0) 〈0|Pb(y)Pa(x) |0〉 .

(2.81)

If we insert the completeness relation (2.71) and use (2.78), we obtain (z = x− y):

〈0|TPa(x)Pb(y)|0〉 =
∑

λ

[∫
d3p

2Ep

Θ(z0) e−ipz + Θ(−z0) eipz

(2π)3

]
r2
λ δab

=
∑

λ

DF (z,mλ) r2
λ δab =

∫
d4p

(2π)4
e−ipz

∑

λ

ir2
λ δab

p2 −m2
λ + iε

(2.82)

because the square bracket in the first line is just the definition of the Feynman prop-
agator:

DF (z,mλ) =

∫
d4p

(2π)4
e−ipz

i

p2 −m2
λ + iε

. (2.83)

Eq. (2.82) is the Källén-Lehmann representation for the pseudoscalar current correlator:
it can be expressed by a sum over particle poles with masses mλ and residues r2

λ. The
sum over λ retains only those states which overlap with the pseudoscalar density, i.e.,
the pseudoscalar mesons. In principle we should generalize formulas like these to a
spectral density ρ(m2) in order to include the various branch cuts from the multiparticle
continua:

∑

λ

DF (z,mλ)Rλ →
∫
dm2DF (z,m)

[∑

λ

Rλ δ(m
2 −m2

λ) + (. . . )

︸ ︷︷ ︸
=:ρ(m2)

]
. (2.84)

5In the case of rλ, we have to multiply with the quark mass to make this statement exact, cf. (2.79).



54 Hadrons

One can repeat the derivation also for mixed correlators, for example:

〈0|TAµa(x)Pb(y)|0〉 =
∑

λ

[∫
d3p

2Ep

Θ(z0) e−ipz −Θ(−z0) eipz

(2π)3

]
ipµfλ rλ δab

= − ∂

∂zµ

∑

λ

DF (z,mλ) fλ rλ δab

= −
∫

d4p

(2π)4
e−ipz

∑

λ

pµfλ rλ δab
p2 −m2

λ + iε
.

(2.85)

A timelike pole in momentum space corresponds to an exponential (Euclidean) time
decay. This can be seen from the spatial integral over the Feynman propagator (2.83):

∫
d3z DF (z,mλ)

Euclidean−−−−−−→
∫
dp0

2π

e−ip0z0

p2
0 +m2

λ

=
e−mλ|z0|

2mλ
. (2.86)

If we put this back in the spectral representation and take the sum over λ, the ground
state with lowest mass will dominate the sum at large times. In this way hadron masses
and other observables can be extracted in lattice QCD.

Hadron poles are everywhere! Current correlators are the Dirac-flavor traced
versions of the quark four-point function from Eq. (2.72). While they contain only
poles with the same quantum numbers as the involved currents, the four-point function
contains all possible meson poles. In this case, working out the spectral representation
is more tedious because one first has to write down all possible (4! = 24) time orderings
to ensure the correct arrangements of the step functions that will eventually constitute
the Feynman propagator. It turns out that these 24 step functions can be grouped
into three categories which correspond to the s, t and u channels. If we abbreviate
ψα(x1) ≡ ψ1 and so on, and introduce the variables

zs = x1 + x2 − x3 − x4 (s channel) ,

zt = x1 + x4 − x3 − x2 (t channel) ,

zu = x1 + x3 − x2 − x4 (u channel) ,

(2.87)

then after some algebra6 you can verify that Gαβγδ(x1, x2, x3, x4) can be written as

G1234 = Θ(z0
s ) 〈0|T(ψ1 ψ2)T(ψ3 ψ4)|0〉+ Θ(−z0

s ) 〈0|T(ψ3 ψ4)T(ψ1 ψ2)|0〉
−Θ(z0

t ) 〈0|T(ψ1 ψ4)T(ψ3 ψ2)|0〉 −Θ(−z0
t ) 〈0|T(ψ3 ψ2)T(ψ1 ψ4)|0〉

−Θ(z0
u) 〈0|T(ψ1 ψ3)T(ψ2 ψ4)|0〉 −Θ(−z0

u) 〈0|T(ψ2 ψ4)T(ψ1 ψ3)|0〉 .
(2.88)

Inserting the completeness relation in any of these channels yields then the spectral
representation of the four-point function, where the pole residues are now the bound-
state wave functions from Eq. (2.74). For example, the s−channel contribution becomes
in momentum space:

Gαβγδ(q, q
′, p)

∣∣∣
s channel

=
∑

λ

iχaαβ(q, p)χaγδ(q
′, p)

p2 −m2
λ + iε

, (2.89)

6Use the fact that a > b > c > d is equivalent to (a > b), (a + b > c + d), (c > d), and hence
Θ(a− b) Θ(b− c) Θ(c− d) = Θ(a+ b− c− d) Θ(a− b) Θ(c− d).



2.2 Hadrons, poles and decay constants 55

where q and q′ are the respective relative momenta. An analogous formula holds for
the t channel. In the u−channel, one would obtain diquark poles which are forbidden
because diquarks are not color singlets. Similar relations are then also valid for the
quark six-point function (with baryon poles), for the eight-point function (tetraquark
poles?), and in principle also for the 12-point function (deuteron) etc.

As another example, you can also contract only one qq̄ pair in the four-point func-
tion, as shown in the bottom line of Fig. 2.3: this yields the three-point vertices defined
earlier in Eq. (2.49). Consequently, meson poles will also show up in those Green func-
tions. Depending on the flavor generator ta of the current, the vector vertex GµV will
contain vector meson poles, the pseudoscalar vertex pseudoscalar mesons, and so on,
whenever the square of the total momentum approaches Q2 → m2

λ.
Finally, poles will also appear in the five-point function

(GΓ)a,αβγδ(x, x1, x2, x3, x4) := 〈0|T jΓ
a (x)ψα(x1)ψβ(x2)ψγ(x3)ψδ(x4) |0〉 ,

(GΓ)a,αβγδ(q, q
′, p, p′)

∣∣∣
s channel

=
∑

λλ′

iχbαβ(q, p)

p2 −m2
λ + iε

〈λb| jΓ
a (0) |λ′c〉

iχcγδ(q
′, p′)

p′2 −m2
λ′ + iε

.

(2.90)

Its residue 〈λb| jΓ
a (0) |λ′c〉 defines a hadron’s current matrix element, or the transition

current matrix element between two different hadrons. Its decomposition in momentum
space, similarly to (2.78) and (2.80), encodes the various measurable form factors of
hadrons: electromagnetic, axial, pseudoscalar, scalar form factors, etc.


