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2.4 Spontaneous chiral symmetry breaking

We have earlier seen that renormalization introduces a scale. Without a scale in the
theory all hadrons would be massless (at least for vanishing quark masses), so the
anomalous breaking of scale invariance is a necessary ingredient to understand their
nature. The second ingredient is spontaneous chiral symmetry breaking. We will see
that this mechanism plays a quite important role in the light hadron spectrum: it is
not only responsible for the Goldstone nature of the pions, but also the origin of the
’constituent quarks’ which produce the typical hadronic mass scales of ∼1 GeV.

Spontaneous symmetry breaking. Let’s start with some general considerations.
Suppose ϕi are a set of (potentially composite) fields which transform nontrivially
under some continuous global symmetry group G. For an infinitesimal transformation
we have δϕi = iεa(ta)ij ϕj , where εa are the group parameters and ta the generators
of the Lie algebra of G in the representation to which the ϕi belong. Let’s call the
representation matrices Dij(ε) = exp(iεata)ij . The quantum-field theoretical version
of this relation is

eiεaQa ϕi e
−iεaQa = D−1

ij (ε)ϕj ⇔ [Qa, ϕi] = −(ta)ij ϕj , (2.128)

where the charge operatorsQa form a representation of the algebra on the Hilbert space.
(An example of this is Eq. (2.47).) If the symmetry group leaves the vacuum invariant,
eiεaQa |0〉 = |0〉, then all generators Qa must annihilate the vacuum: Qa|0〉 = 0. Hence,
when we take the vacuum expectation value (VEV) of this equation we get

〈0 |ϕi| 0〉 = D−1
ij (ε) 〈0 |ϕj | 0〉 . (2.129)

If the ϕi had been invariant under G to begin with, this relation would be trivially
satisfied. Because they transform nontrivially, D−1

ij (ε) is not the identity matrix for all
εa and so these vacuum expectation values must vanish:

Qa |0〉 = 0 ⇒ 〈0 |ϕi| 0〉 = 0 . (2.130)

This is the ’Wigner-Weyl realization’ of a symmetry.
On the other hand, if an operator which is not invariant under G develops a nonzero

vacuum expectation value, then the symmetry G is spontaneously broken. This is the
’Nambu-Goldstone realization’ of the symmetry:

〈0| [Qa, ϕi] |0〉 = −(ta)ij 〈0|ϕj |0〉 6= 0 . (2.131)

Then one would conclude that the charges do not annihilate the vacuum: Qa|0〉 6= 0.
Since the symmetry is classically realized, they still commute with the Hamiltonian
and we have found another energy-degenerate vacuum:

Qa|0〉 = |η〉 6= 0 ⇒ H|0〉 = 0 −→ H|η〉 = 0 . (2.132)

Unfortunately we have to be careful with these statements because in the case of spon-
taneous symmetry breaking the charges are not well defined. |η〉 is not a normalizable
state, which we can see from using the definition of the charge (2.3) and translation
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invariance. However, commutators involving the charges can still be defined, so when
discussing spontaneous symmetry breaking we should start from Eq. (2.131). The Gold-
stone theorem follows if we insert the completeness relation (2.71) in that equation:

〈0| [Qa(x0), ϕ(0)] |0〉 =

∫
d3x 〈0|

[
j0
a(x), ϕ(0)

]
|0〉

=
∑

λ

∫
d3p

2Ep

1

(2π)3

∫
d3x

(
Raλ(p) e−ipx −R?aλ(p) eipx

)

=
∑

λ

Raλ(0) e−imλx0 −R?aλ(0) eimλx0

2mλ

!
= const.

(2.133)

In going from the first to the second row we have used translation invariance (2.76)
to factor out the phases e±ipx, and we defined Raλ(p) := 〈0| j0

a(0) |λ〉〈λ|ϕ(0) |0〉. The
integral over x produces δ3(p), so that p0 = Ep becomes mλ. It is crucial that the
VEV on the right-hand side is nonzero and time-independent. That requirement can
only be met if for each charge Qa there is a mode |λ〉 with

mλ = 0 and
Raλ(0)

imλ
6= 0 and real . (2.134)

(To see this, perform a Taylor expansion of the exponentials e±imλx0 .) Thus, for each
generator that does not leave the vacuum invariant there is a massless Goldstone boson
whose vacuum overlap with j0

a and ϕ is non-zero. The other modes withmλ 6= 0 (excited
states) must have Raλ(0) = 0.

Chiral condensate. So how does spontaneous breaking of chiral symmetry come
about in QCD? First we have to identify potential candidates for vacuum condensates
that break chiral symmetry. Earlier we talked about taking Dirac-flavor traces of the
quark four-point function. What if we trace the quark propagator Sαβ(x, x) itself? The
result will be the vacuum expectation value of either of the currents in Eq. (2.12):

− Γβα ta Sαβ(x, x) = 〈0|jΓ
a (x)|0〉 = 〈0|jΓ

a (0)|0〉. (2.135)

Because of translation invariance they cannot depend on x and must be (dimensionful)
constants, which are consequently zero due to Lorentz and parity invariance. The only
possible exception is the scalar condensate which carries the quantum numbers of the
vacuum (0++):

〈0|S(0)|0〉 = 〈0|ψ(0)ψ(0) |0〉 =: 〈ψψ〉. (2.136)

From Eq. (2.42) we infer [QVa , Sb(x)] = ifabc Sc(x). Therefore, if SU(Nf )V is unbroken
and hence QVa |0〉 = 0, all non-singlet scalar condensates must vanish as well. The
singlet condensate is then identical for all flavors:

〈0|Sa(0)|0〉 = 0 ⇒ 〈ūu〉 − 〈d̄d〉 = 0, 〈ūu〉+ 〈d̄d〉 − 2〈s̄s〉 = 0, (2.137)

and therefore 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 = 〈ψψ〉/3. On the other hand, a scalar bilinear of
two quark fields breaks chiral symmetry (that is, it breaks SU(Nf )A × U(1)A), as we
saw in Eq. (2.36), so in a chirally symmetric theory of massless quarks this quantity
should also vanish. But does it?
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Figure 2.7: Quark DSE.

Quark mass function. Since the condensate is the trace of the quark propagator,
let’s have a closer look at the propagator itself. Take the inverse quark propagator
from the Lagrangian:10

S−1(p) = A(p2)
(
i/p+M(p2)

)
= Z2(i/p+ Zmm) + Σ(p) . (2.139)

The first equality is the general form from Poincaré covariance and parity invariance;
i.e., there cannot be more terms than those two. M(p2) is the quark mass function
since it perturbatively reduces to the tree-level mass in the Lagrangian. From taking
the inverse we obtain the general form for the quark propagator itself:

S(p) =
−i/p+M(p2)

(p2 +M(p2)2)A(p2)
. (2.140)

The second equality in (2.139) is the quark’s Dyson-Schwinger equation, where the
right-hand side contains the tree-level part plus self-energy quantum corrections, see
Fig. 2.7. The trace with 1 singles out the contribution from the mass function so that
the condensate is proportional to the integrated quark mass function:11

− 〈ūu〉 = NC

∫
d4p

(2π)4
TrS(p) =

NC

(2π)2

∫
dp2 p2

A(p2)

M(p2)

p2 +M(p2)2
. (2.141)

Therefore, for a chirally symmetric Lagrangian (m = 0), the quark mass function should
be zero for all p2 which means that the resulting quark propagator is chirally symmetric:
{γ5, S(p)} = 0. Indeed, this is what we find if we evaluate the self-energy order by order
in perturbation theory: each diagram contains an odd number of massless tree-level
propagators (∼ /p) and vertices (∼ γµ), and we can never generate a scalar term because
the trace of an odd product of γ-matrices is zero. Hence, the resulting mass function will
be zero to all orders in perturbation theory. Can we obtain a non-zero mass function
nonperturbatively?

10We temporarily switch to Euclidean conventions:

aµE = (a, ia0) , γµE = (−iγ, γ0) , {γµE , γ
ν
E} = 2δµν ⇒ aE · bE = −a · b , /aE = i/a . (2.138)

A scalar propagator i/(p2−m2 + iε) becomes 1/(p2E+m2) if the global factor i is removed, and positive
p2E means spacelike. We drop the label ’E’.

11With hyperspherical coordinates one obtains
∫
d4p f(p2) = π2

∫
dp2p2 f(p2); an additional factor

4 comes from the Dirac trace over the unit matrix. The condensate renormalizes like the mass term
in the Lagrangian, i.e., the right-hand side picks up an additional factor Z2Zm so that the product
m〈ψψ〉 is renormalization-point independent.
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Munczek-Nemirovsky model. The answer is yes; in fact, this feature can be illus-
trated already in simple models for the DSE. Let’s assume that the quark-gluon vertex
in the self-energy remains at tree-level, and only the internal quark and gluon propa-
gators are dressed (’rainbow truncation’). In Feynman gauge the gluon is diagonal in
its Lorentz indices, so we can write the self-energy as

Σ(p) =

∫
d4k γµ S(p+ k) γµD(k) , (2.142)

where D(k) is proportional to the gluon propagator. It must be a scalar function of the
gluon momentum k2 with mass dimension −2. At large k2 it must also be proportional
to QCD’s running coupling, D(k2) ∼ αs(k

2)/k2, because there the gluon propagator
and quark-gluon vertex approach their tree-level values. On the other hand, since the
coupling becomes large in the infrared, calculating the self-energy allows us to test the
impact of a nonperturbative large coupling on the quark propagator. For example,
we can employ the Munczek-Nemirovsky model where the gluon propagator is just a
δ-function peaked at the origin, equipped with some mass scale Λ:

D(k)→ Λ2 δ4(k) . (2.143)

Since the self-energy can be integrated analytically, this model is UV-finite and instead
of imposing renormalization conditions we can set all renormalization constants to 1.
The result for the self-energy is

S(p) =
−i/p+M

(p2 +M2)A
⇒ Σ(p) = Λ2 γµS(p)γµ = Λ2 2i/p+ 4M

(p2 +M2)A
, (2.144)

where we suppressed the momentum dependencies of A(p2) and M(p2) for brevity.
Inserting this in the DSE leads to selfconsistent equations for the two quark dressing
functions:

A = 1 +
2Λ2

(p2 +M2)A
, AM = m+ 2M

2Λ2

(p2 +M2)A
. (2.145)

In the chiral limit (m = 0), we see from the second equation that the trivial solution
M = 0 is always possible. It leads to a quadratic equation for A whose result is

M(p2) = 0 , A(p2) = 1
2

(
1 +

√
1 + 8 Λ2/p2

)
. (2.146)

It has the correct perturbative behavior for p2 →∞, namely M = 0 and A→ 1, so it
reverts the quark propagator back to its tree-level form and preserves chiral symmetry.
On the other hand, A(p2) diverges for p2 → 0, so this cannot be the whole story. Indeed
there is now also another solution with M 6= 0:

M(p2) =
√

Λ2 − p2 , A(p2) = 2 . (2.147)

It breaks chiral symmetry spontaneously and is finite in the infrared. Both solutions
are connected at the point p2 = Λ2, see Fig. 2.8. If we switch on a quark mass m 6= 0,
the curves become smooth.
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Figure 2.8: Quark propagator in the Munczek-Nemirovsky model (left) and NJL model
(right). The dashed lines show the qualitative behavior of the solutions at m 6= 0.

Despite the simplicity of the model, these results capture already the essence of
more realistic DSE calculations: coming from large momenta, the onset of the non-
symmetric phase sets in at some typical hadronic scale Λ, below which a mass term
is spontaneously generated. The mass function in the infrared defines the relevant
quark mass at low momenta that is relevant for hadrons, so it can be viewed as a
constituent-quark mass scale. Thus, the quark mass function encodes the transition
from a current quark at large momenta to a constituent quark in the infrared. If we
insert the combined solution in Eq. (2.141), the resulting quark condensate in the chiral
limit becomes proportional to Λ3. With Λ = 1 GeV we even get a reasonable value for
the quark condensate:

− 〈ūu〉 =
2

15

NC

(2π)2
Λ3 → ∼ (220 MeV)3 . (2.148)

Contact interaction. The shortcoming of the Munczek-Nemirovsky model is that it
doesn’t have a critical coupling: a non-trivial solution for the quark mass function and
consequently also a chiral condensate exist for any Λ > 0. The gluon propagator in
Eq. (2.143) is localized in momentum space because of the δ−function. We could take
the extreme opposite and localize it in coordinate space, which results in an effective
four-fermi interaction between two quarks where the gluon shrinks to a point and is
integrated out. This is the NJL model (Nambu, Jona-Lasinio), where the momentum
dependence of the gluon is simply a constant:

D(k)→ 1

(2π)2

c

Λ2
. (2.149)

In this case it is more convenient to integrate over the quark momentum q = p − k
instead of k in (2.142); however, the self-energy integral must now be regulated because
it is divergent. We could impose a sharp cutoff in q2, so that the gluon propagator is a
constant up to some scale Λ and zero above. As a consequence, the integral no longer
contains the external momentum p and so Σ(p) is also just a constant, which means
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that A and M will be constants as well. It turns out that the self-energy contribution
to A vanishes and we get A = 1. The equation for M becomes:

M = m+ cM

1∫

0

dy
y

y + a
=: m+ cM f(a), y =

q2

Λ2
, a =

M2

Λ2
, (2.150)

with f(a) = 1 − a ln(1 + 1
a). The function f(a) satisfies f(a) ≤ 1 and f(0) = 1. This

means in the chiral limit we have again the trivial solution M = 0, but for c ≥ 1 also
a nontrivial solution is possible, where M as a function of c is determined from the
equation f(a) = 1/c. The result is shown in Fig. 2.8. The ’quark mass’ is zero for
c < 1; above that value chiral symmetry is spontaneously broken. If we impose the
same cutoff for the chiral condensate, we find that it is proportional to M as well, with
a similar form as in Eq. (2.148): if we work out M(c), the prefactor 2/15 is replaced
by a function of c which is zero as long as c < 1.

In general, the gluon propagator will be neither a δ−function nor a constant, and
the spontaneous breaking of chiral symmetry will not only generate a mass term for
the quark propagator but also chirally asymmetric terms for the quark-gluon vertex.
Nevertheless, both models encode general features:

• Implementing the scale Λ was necessary to make them work. If we replaced Λ2 by
k2 in Eq. (2.143), the self-energy would vanish. In the NJL model, Λ defines the
regularization cutoff which cannot be removed. Consequently, the mass function
and other dimensionful quantities will be expressed in terms of that scale.

• Spontaneous chiral symmetry breaking is a critical phenomenon: if the com-
bined strength from the gluon propagator and quark-gluon vertex (the ’effective’
running coupling) exceeds a critical value, a quark mass will be generated dy-
namically; if this is not the case, we remain with the chirally symmetric solution.

• In contrast to some effective theories of QCD, where the terms that eventually
lead to spontaneous symmetry breaking already appear in the Lagrangian, the
original QCD Lagrangian tells us nothing about whether chiral symmetry is pre-
served or not at the quantum level. Its spontaneous breaking is a purely dynam-
ical effect induced by the strong gluonic interactions, hence the name ’dynamical
chiral symmetry breaking’.

Gell-Mann-Oakes-Renner relation. Now let’s return to Goldstone’s theorem. We
have explored the origin of spontaneous chiral symmetry breaking and identified its or-
der parameters: the scalar quark condensate or, equivalently, the quark mass function.
Hence, any other quantity that depends on the mass function (and vanishes if the mass
function does) will break chiral symmetry as well. In Eq. (2.79) we have found that as
a simple consequence of the PCAC relation either a pseudoscalar meson’s mass or its
electroweak decay constant must be zero in the chiral limit. Therefore, if we can show
that the pion decay constant is also generated by dynamical chiral symmetry breaking,
we must have massless pions.
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The right place to look for such a relation is the axial WTI in (2.56). On its right-
hand side we have the sum of two quark propagators multiplied with γ5; if we take
the trace with another γ5, it will become proportional to the quark condensate. If
we shuffle the term with GP to the left-hand side, we obtain a difference of AP and
PP current correlators. When we insert the completeness relation, both of them will
contain pseudoscalar poles only, and the residues will depend on fλ. Moreover, the
axial WTI tells us that all bound-state poles in GA and GP must cancel out with their
numerators because the quark propagator does not exhibit such poles. To see this, let’s
start directly from the WTI for the current correlator from Eq. (2.50):

∂xµ〈0|TAµa(x)Pb(0)|0〉 − 2m 〈0|TPa(x)Pb(0)|0〉 = δ(x0) 〈0|
[
A0
a(x), Pb(0)

]
|0〉 . (2.151)

We already inserted the PCAC relation for the PP term. If we integrate over d4x
on the right-hand side, we obtain the vacuum expectation value of the commutator in
Eq. (2.45),

〈0|
[
QAa , Pb(0)

]
|0〉 = −i〈0|

[
δab
Nf

S(0) + dabc Sc(0)

]
|0〉 = −i δab

Nf
〈ψψ〉 , (2.152)

where only the singlet condensate survives in the limit of exact SU(Nf )V . This is the
representative of the generic equation (2.131): since the condensate which is not in-
variant under axial symmetries is the scalar condensate and the respective charges are
the axial charges, the corresponding field ϕi must be the pseudoscalar density. For the
left-hand side in Eq. (2.151), we can insert the spectral decomposition from (2.82) and
(2.85) and integrate over x. In momentum space, this means taking the limit p→ 0:

lim
p→0

∑

λ

p2fλ − 2mrλ
p2 −m2

λ + iε
irλ δab =

∑

λ

irλfλ δab = −i δab
Nf
〈ψψ〉 , (2.153)

where we have used the relation fλm
2
λ = 2mrλ from Eq. (2.79) in the second step.

The poles cancel indeed, and we arrive at the result that if chiral symmetry is realized
and the quark condensate vanishes, all combinations rλ fλ must vanish as well; if it is
spontaneously broken, there is at least one mode where both rλ and fλ are nonzero.
Since fλ 6= 0 in that case, we must have mλ → 0, i.e., a massless Goldstone boson. Each
|λ〉 is proportional to one of the generators, so we have a massless Goldstone boson
for each generator ta (for three flavors with SU(3)A ×U(1)A we obtain a pseudoscalar
octet and a singlet). In turn, the decay constants fλ must vanish for the remaining
excited states with mλ 6= 0, so we can remove the sum in the equation above and write

rλ fλ = −〈ψψ〉
Nf

, (2.154)

where λ is the ground state contribution. If we substitute rλ by the condensate and
insert it in Eq. (2.79), we obtain the Gell-Mann-Oakes-Renner (GMOR) relation,

f2
λm

2
λ = −2m

〈ψψ〉
Nf

, (2.155)
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which is valid for each member of the lowest-lying pseudoscalar octet and singlet. (In
the singlet case it only holds if we ignore the anomaly.)

In the derivation so far we have assumed that all quark masses are equal, mu =
md = ms. In the case of SU(3)V breaking, we have to go back to the general PCAC
relation (2.25) and evaluate the anticommutators, and also retain the dabc terms in
Eq. (2.152). In this case the GMOR relation retains its form for each generator with
index a if we replace the quark mass m by

a = 1, 2, 3 : 1
2 (mu +md) ,

a = 4, 5 : 1
2 (mu +ms) ,

a = 6, 7 : 1
2 (md +ms) ,

a = 8 : 1
6 (mu +md + 4ms) ,

a = 0 : 1
3 (mu +md +ms) ,

(2.156)

and the condensate accordingly:

〈ψψ〉
3
−→ 〈ūu+ d̄d〉

2
(a = 1, 2, 3),

〈ūu+ s̄s〉
2

(a = 4, 5), etc. (2.157)

Therefore we get for the pions and kaons:

f2
πm

2
π = −mu +md

2
〈ūu+ d̄d〉 , f2

K m
2
K = −mu +ms

2
〈ūu+ s̄s〉 . (2.158)

Inserting the experimental values12 fπ ≈ 92 MeV, mπ ≈ 140 MeV and assuming
an average quark mass mu = md = 3.5 MeV yields 〈ūu〉 = 〈d̄d〉 ≈ −(280 MeV)3.
The same estimate for kaons (fK ≈ 110 MeV, mK ≈ 494 MeV, ms ≈ 120 MeV)
gives us 〈s̄s〉 ≈ −(290 MeV)3. The renormalized quark masses and condensates are
renormalization-point and -scheme dependent; the values quoted here are consistent
with recent lattice QCD results,13 obtained in an MS scheme at µ = 2 GeV.

Strictly speaking, the GMOR relation as it stands is only valid in the chiral limit
because the quark condensate is only well-defined for m = 0. We can see this from its
definition (2.141) as the momentum integral of the quark mass function: if M(p2 →∞)
doesn’t vanish like 1/p2 but rather logarithmically (which happens for m 6= 0), the
integral diverges quadratically. In this case, fλm

2
λ = 2mrλ from Eq. (2.79) can be

viewed as the generalized GMOR relation since the quantities fλ and rλ are well-
defined for all quark masses. In principle, they can be used to define the scalar quark
condensate entirely from a pseudoscalar meson’s bound-state wave function, namely as
the chiral limit of the combination fλ rλ via Eq. (2.154).

12The decay constants are often defined with a factor
√

2, so that fπ ≈ 130 MeV.
13McNeile et al., Phys. Rev. D87 (2013), 034503. arXiv:1211.6577.
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