
56 Quantum field theory

5 Electromagnetic field

Classical electromagnetism. Classical Maxwell equations:

∇ ·E = ρ , ∇×B − ∂E

∂t
= j , ∇ ·B = 0 , ∇×E +

∂B

∂t
= 0 . (5.1)

The inhomogeneous equations imply local charge conservation:

∂ρ

∂t
+ ∇ · j = 0 . (5.2)

To arrive at covariant equations, define the current jµ = (ρ, j) and the antisymmetric
field-strength tensor Fµν = −F νµ as

F ij = −εijk Bk ⇔ Bi = −1
2 εijk F

jk , F 0i = −Ei , (5.3)

together with its dual:

F̃µν =
1

2
εµνρσ Fρσ ⇒ F̃ ij = εijk F

0k = −εijk Ek ,
F̃ 0i = −1

2 εijk F
jk = Bi .

(5.4)

The combination of Maxwell equations and current conservation becomes

∂µ F
µν = jν , ∂µ F̃

µν = 0 , ∂µ j
µ = 0 . (5.5)

Current conservation follows again from the inhomogeneous Maxwell equation because
∂µ∂νF

µν = 0. The homogeneous Maxwell equations allow us to construct a vector
potential Aµ = (φ,A) via

Fµν = ∂µAν − ∂νAµ ⇔ E = −∇φ− ∂A

∂t
, B = ∇×A , (5.6)

which is then only determined up to a derivative:

A′
µ
(x) = Aµ(x) + ∂µε(x) ⇔ φ′ = φ+

∂ε

∂t
, A′ = A−∇ε . (5.7)

In other words, Fµν and therefore the fields E and B are invariant under local gauge
transformations, and vector fields Aµ that differ only by such a term are physically
equivalent. Local gauge invariance will eventually become the fundamental construc-
tion principle for interacting field theories. At the present stage it merely corresponds
to a redundancy in the description of the system, and to determine the true physical
degrees of freedom we must be sure to divide out this redundancy (which will be the
main difficulty in quantizing the system). In summary, all three equations in Eq. (5.5)
can be combined into the Maxwell equations

2Aµ − ∂µ∂νAν = jµ . (5.8)
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Lagrangian of the electromagnetic field. We interpret the vector field Aµ(x)
now as the fundamental electromagnetic field. The Maxwell equations follow as the
equations of motion from the action

S =

∫
d4xL =

∫
d4x

[
−1

4
FµνF

µν − jµAµ
]

=

∫
d4x

[
1

2
(E2 −B2)− jµAµ

]
. (5.9)

The current jµ(x) that appears here as a static source term is presently just a com-
promise that we will eventually get rid of: in a fully interacting theory the current will
emerge from other fields and thereby carry their dynamical information (in a free field
theory jµ = 0). Let’s rewrite the action in terms of Aµ and its derivatives:

S =

∫
d4x

[
−1

2
(∂µAν − ∂νAµ) ∂µAν − jµAµ

]
p.I.
=

∫
d4x

[
1

2
Aµ (2 gµν − ∂µ∂ν)Aν − jµAµ

]
.

(5.10)

From the first line above it is easy to derive the Maxwell equations via

∂L
∂Aν

= −jν ,
∂L

∂(∂µAν)
= −∂µAν + ∂νA

µ = −Fµν , (5.11)

and we can read off the canonical conjugate momentum:

Πν =
∂L

∂(∂0Aν)
= −F 0

ν ⇒ Π0 = 0 , Π = E . (5.12)

Note that the time component A0 has no conjugate momentum, which will produce
difficulties in the quantization. The Hamilton function becomes

H =

∫
d3xH =

∫
d3x

[
Πν

∂Aν

∂t
− L

]
=

∫
d3x

[
1

2
(E2 +B2) +E ·∇φ+ ρ φ− j ·A

]
p.I.
=

∫
d3x

[
1

2
(E2 +B2)− j ·A

]
.

(5.13)

Poincaré transformations. Let’s study the conservation laws that follow from the
Poincaré invariance of the action. According to Eq. (1.40), the generic infinitesimal
current takes the form

− δjµ =
∂L

∂(∂µAν)
δAν − Tµνδxν = −Fµν δAν − Tµνδxν , (5.14)

and the energy-momentum tensor is given by

Tµν =
∂L

∂(∂µAα)
∂νAα − gµνL = −Fµα ∂νAα − gµνL . (5.15)

Translation invariance (δAν = 0, δxν = aν) implies that it is conserved; however, in
the presence of the current jµ(x) its divergence is ∂µT

µν = (∂νjα)Aα 6= 0. This is
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just because we treat the current as an external source: in a complete theory it would
emerge from other fields which also contribute to the energy-momentum tensor. (By
the way, note that δjµ has nothing to do with jµ.)

Under Lorentz transformations the field transforms as

A′
µ
(x′) = ΛµνA

ν ⇔ δxα = εαβ x
β ,

δAα = εαβA
β = i

2 εµν (Mµν)αβ A
β ,

(5.16)

because in the vector representation the irreducible representation matrix is just the
Lorentz transformation itself. The infinitesimal generator of Lorentz transformations
was given in Eq. (2.54):

(Mµν)αβ = −i (δµα δ
ν
β − δνα δµβ) . (5.17)

The corresponding infinitesimal current defines the angular momentum density,

− δjµ = −1
2 εαβ

(
FµαAβ − FµβAα + Tµαxβ − Tµβxα

)︸ ︷︷ ︸
=: mµ,αβ

, (5.18)

which is conserved (if the external current jµ = 0): ∂µm
µ,αβ = 0. Once again we

can insert the explicit form of the energy-momentum tensor and isolate the orbital
angular-momentum part:

Tµαxβ − Tµβxα = iFµρ LαβAρ + (xαgµβ − xβgµα)L , (5.19)

where Lαβ was defined in Eq. (1.44). In combination with the spin contribution, the
angular momentum density becomes

mµ,αβ = iFµρ
[
(Mαβ)ρσ + gρσL

αβ
]
Aσ =: iFµρ (Jαβ)ρσA

σ . (5.20)

Hence, the charge that is conserved under rotations is the angular momentum of the
electromagnetic field∫

d3xm0,ij = −i
∫
d3xEk(J ij)klA

l =: −εijk J̃k , (5.21)

whose explicit form is

J̃ =

∫
d3x

(
E ×A− iEkLAk

)
(5.22)

with L = x× (−i∇). The spin of the electromagnetic field is
∫
d3xE ×A.

The energy-momentum tensor Tµν in Eq. (5.15) is neither symmetric in its indices nor gauge-invariant
(because it depends explicitly on Aα). An alternative symmetric form of the energy-momentum tensor

(Ex) is the Belinfante tensor, which is still conserved and therefore physically equivalent:

Θαβ = Tαβ − 1
2
∂µ (sµ,αβ + sα,βµ − sβ,µα) . (5.23)

Here, sµ,αβ is the spin contribution to the angular momentum density, i.e.

mµ,αβ = sµ,αβ + Tµαxβ − Tµβxα . (5.24)
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This statement is general and holds independently of the nature of the fields. Its proof is simple: by
construction, sµ,αβ is antisymmetric in α, β and therefore

Θαβ −Θβα = Tαβ − T βα − ∂µ sµ,αβ . (5.25)

On the other hand, by taking the derivative of mµ,αβ we see that

∂µm
µ,αβ = ∂µ s

µ,αβ − (Tαβ − T βα) = 0 (5.26)

and therefore Θαβ is symmetric. (We used the fact that Tαβ and mµ,αβ are conserved.) Θαβ is
conserved because the bracket in Eq. (5.23) is antisymmetric under an exchange µ↔ α:

∂α Θαβ = − 1
2
∂α∂µ (sµ,αβ − sα,µβ − sβ,µα) = 0 . (5.27)

Let’s work out the Belinfante tensor for the electromagnetic field. When inserting sµ,αβ = FµαAβ−
FµβAα into Eq. (5.23) we obtain

Θαβ = Tαβ − ∂µ (FµαAβ) = −Fαµ ∂βAµ − ∂µ (FµαAβ)− gαβL

= FαµF β
µ − jαAβ − gαβL .

(5.28)

Apart from the j · A term it is now also gauge-invariant. (Although Tµν was gauge dependent, the
charges derived from it are gauge-invariant because gauge transformations would only produce surface
terms – see Maggiore, p.68.) Its components are

Θ00 = (F 0i)2 − j0A0 − L =
1

2
(E2 +B2)− j ·A = H ,

Θ0i = F 0k F ik − j0Ai = (E ×B)i − ρA .
(5.29)

Likewise, Θij would give the Maxwell stress tensor. The corresponding charges are the components of
the four momentum Pµ =

∫
d3xΘ0i. Therefore, in the absence of an external current jµ, the energy

density of the electromagnetic field is 1
2

(E2 +B2), its momentum density is the Poynting vector E×B,
and its spin density is E ×A.

Gauge fixing. Gauge invariance poses new problems for the quantization of the
electromagnetic field. The field carries spin 1 and is of bosonic nature, so in principle
we should impose the commutator relations

[Aµ(x),Πν(y)]x0=y0 = igµν δ3(x− y) . (5.30)

Unfortunately this gives a contradiction because Π0 = 0 vanishes and cannot have a
non-trivial commutator with A0. This reflects the redundancy that is inherent in the
field Aµ. Gauge invariance tells us that we should restrict ourselves to a subset of fields
Aµ that satisfy a certain gauge-fixing condition, for example

• the Lorenz gauge ∂µA
µ = 0: it only partially fixes the gauge, because we are

still free to perform a residual gauge transformation A′µ = Aµ + ∂µε as long as
2 ε = 0. The Maxwell equations in the Lorenz gauge simply become 2Aµ = jµ.

• the radiation gauge A0 = 0, ∇ · A = 0: here the gauge fixing is complete
because the remaining gauge parameter ε can be only a constant. The radiation
gauge implies the Lorenz gauge ∂µA

µ = 0 but it is more restrictive.

There are two possible strategies for quantizing the theory: we could either fix the
gauge in advance and thereby eliminate the unphysical degrees of freedom. The price
we have to pay is the loss of manifest Lorentz covariance, and we have to check at the
end of the quantization procedure that Lorentz symmetry is still intact. The second
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option is to work with the full gauge field Aµ and start from a modified Lagrangian
where Π0 does not vanish. This will introduce spurious degrees of freedom which we
have to eliminate at the end.

We follow the second avenue and start from the following ‘gauge-fixed’ Lagrangian,
where the gauge-fixing condition ∂µA

µ = 0 is implemented in the form of a Lagrange
multiplier:

L = −1

4
FµνF

µν − λ

2
(∂ ·A)2 . (5.31)

The resulting equations of motion become

∂µ F
µν + λ∂ν∂µA

µ = 0 ⇔ 2Aµ + (λ− 1) ∂µ∂νA
ν = 0 . (5.32)

Taking their divergence yields λ2 ∂µA
µ = 0, which means that ∂µA

µ must be a free
scalar field that satisfies the massless Klein-Gordon equation. The additional term in
the Lagrangian ensures that Π0 = −λ∂µAµ is no longer zero (the spatial components
Πi are unchanged), so in principle we can proceed with the quantization. Although we
could discuss what follows for general λ, we set λ = 1 (Feynman gauge) because this
simulates the Lorenz gauge condition in the Maxwell equations: 2Aµ = 0. (The limit
where λ→∞ at the end of all calculations is called Landau gauge.) Following the steps
in Eq. (5.10), it is easy to show that the action obtained from the Lagrangian (5.31)
with λ = 1 is equivalent to that of the Fermi Lagrangian

L = −1

2
(∂µAν)(∂µAν) . (5.33)

Its canonical conjugate momentum is

Πν =
∂L

∂(∂0Aν)
= −∂0Aν = −Ȧν , (5.34)

and the Hamiltonian of this theory becomes

H =

∫
d3x

(
ΠνȦ

ν − L
)

=

∫
d3x

[
−1

2
Ȧ2 − 1

2
(∇Aν)(∇Aν)

]
. (5.35)

Polarization vectors. The solutions of the free Maxwell equations have the form

Aµ(x) =
1

(2π)3/2

∫
d3p

2Ep

3∑
λ=0

(
ap,λ ε

µ
p,λ e

−ipx + a†p,λ ε
∗µ
p,λ e

ipx
)
, (5.36)

which is compatible with 2Aµ = 0 as an operator equation as long as the four-vector
pµ is lightlike: p2 = 0 ⇔ Ep = |p|. The 4 linearly independent polarization vectors
εµp,λ = εµ(p, λ) depend on pµ, and they can always be chosen to satisfy the following
orthogonality and completeness relations:

εp,λ · εp,λ′ = gλλ′ ,
∑
λλ′

gλλ
′
εµp,λ ε

ν
p,λ′ = gµν . (5.37)

The first relation implies that ε2p,0 = 1 and ε2p,i = −1 so that εµp,0 is timelike whereas
the others with i = 1, 2, 3 are spacelike. In particular, without going into a specific
reference frame one can proceed as follows:
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• The most general timelike vector that satisfies n2 = 1 can be written in the form
n = (

√
1 + n2,n)T . Therefore, set εµp,0 = nµ for the timelike polarization. The

remaining εµp,i must be transverse to nµ with n · εp,i = 0.

• Choose εµp,1 and εµp,2 transverse to pµ, so that p · εp,i = 0 for i = 1, 2.

• The remaining polarization vector εµp,3 must be a linear combination of nµ and

pµ. The conditions n ·εp,3 = 0 and ε2p,3 = −1 fix it uniquely: εµp,3 = pµ/(p ·n)−nµ.
We call it the longitudinal polarization.

For example, with p in z−direction and n = 0 this implies

p = |p|

 1
0
0
1

, n =

 1
0
0
0

 ⇒ εµp, 0...3 =

 1
0
0
0

 ,

 0
1
0
0

,
 0

0
1
0

,
 0

0
0
1

. (5.38)

Canonical quantization. Expressed in terms of the conjugate momentum (5.34), the
commutation relations (5.30) take the form

[Aµ(x), Ȧν(x)]x0=y0 = −igµν δ3(x− y) ,

[Aµ(x), Aν(y)]x0=y0 = 0 ,

[Ȧµ(x), Ȧν(y)]x0=y0 = 0 .

(5.39)

Note that the spatial components behave like ordinary scalar fields with respect to
the commutator relation, whereas the sign for the timelike component is reversed. To
extract the commutation relations for the ladder operators we can simply copy the
steps from Eqs. (2.6–2.11) for the scalar field; the result is

[ap,λ, a
†
p′,λ′ ] = −2Ep gλλ′ δ

3(p− p′) (5.40)

with all other commutators zero. Likewise, the momentum operator turns out to be

Pµ = −
∫

d3p

2Ep
pµ
∑
λλ′

gλλ
′
a†p,λ ap,λ′

∣∣∣
p0=Ep=|p|

=

∫
d3p

2Ep
pµ
[
− a†p,0 ap,0 +

3∑
λ=1

a†p,λ ap,λ

]
p0=Ep=|p|

.

(5.41)

Also here the spatial modes have a positive sign but the timelike component comes
with a minus. The number operator has an analogous form,

N̂ =

∫
d3p

2Ep

[
− a†p,0 ap,0 +

3∑
λ=1

a†p,λ ap,λ

]
p0=Ep=|p|

. (5.42)

Despite appearances, the minus sign does not imply negative eigenvalues for these
operators because when they act on a state a†k,0 |0〉 the sign cancels with that in the
commutator relation:

Pµ a†k,0 |0〉 = kµ a†k,0 |0〉 , N̂ a†k,0 |0〉 = a†k,0 |0〉 . (5.43)
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But this is exactly the problem: the one-particle states a†k,0 |0〉 with timelike polariza-
tion λ = 0 have a negative norm,

〈0| aq,0 a†k,0|0〉 = −2Ek δ
3(k − q) , (5.44)

which spoils the unitarity of the theory. How can we resolve this?

Gupta-Bleuler method. So far our quantization procedure is incomplete because
we have not yet implemented the constraint ∂µA

µ = 0. It is impossible to impose it
as an operator equation for the fields, because this would contradict our commutator
relations:

0
!

= [Aµ(x), ∂νA
ν(y)]x0=y0 = [Aµ(x), Ȧ0(y)]x0=y0 = −igµ0 δ3(x− y) 6= 0 . (5.45)

What we can do instead is to implement it not at the level of the fields, but rather as
a restriction on the Hilbert space. Let’s decompose the field Aµ(x) into positive- and
negative-frequency modes

Aµ+(x) =
1

(2π)3/2

∫
d3p

2Ep

3∑
λ=0

ap,λ ε
µ
p,λ e

−ipx,

Aµ−(x) =
1

(2π)3/2

∫
d3p

2Ep

3∑
λ=0

a†p,λ ε
∗µ
p,λ e

ipx,

(5.46)

so that Aµ = Aµ+ +Aµ−. We say that the physical states |ψ〉 ∈ Hphys are those states
that satisfy the Gupta-Bleuler condition

∂ ·A+ |ψ〉 !
= 0 ⇔ 〈ψ| ∂ ·A− = 0 . (5.47)

The two conditions are equivalent because A†+ = A−, and taken together they imply
that the classical constraint ∂ · A = 0 is now realized in the form of an expectation
value:

〈ψ| ∂ ·A |ψ〉 = 〈ψ| ∂ ·A+ + ∂ ·A− |ψ〉 = 0 . (5.48)

We can work out the consequences of this relation by writing ∂ ·A+ in Fourier modes.
According to our construction of the polarization vectors, their contraction with the
lightlike momentum pµ gives

pµ ε
µ
p,λ =


p · n λ = 0

0 λ = 1, 2

−p · n λ = 3 ,

(5.49)

and therefore

∂ ·A+ = −i
∫

d3p

2Ep
e−ipx

∑
λ

ap,λ pµ ε
µ
p,λ = −i

∫
d3p

2Ep
e−ipx p · n (ap,0 − ap,3) . (5.50)

Hence, the condition (5.47) for physical states |ψ〉 is equivalent to the condition

ap,0 |ψ〉 !
= ap,3 |ψ〉 . (5.51)
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Now observe that whenever we evaluate expectation values of operators of the form (5.41)
or (5.42), we arrive at

〈ψ| a†p,0 ap,0 − a†p,3 ap,3 |ψ〉 = 〈ψ| (a†p,0 − a†p,3) ap,3 |ψ〉 = 0 . (5.52)

Therefore, the timelike and longitudinal photons cancel each other in matrix elements,
and only the transverse, physical polarizations λ = 1, 2 survive:

〈ψ|
[
− a†p,0 ap,0 +

3∑
λ=1

a†p,λ ap,λ

]
|ψ〉 = 〈ψ|

2∑
λ=1

a†p,λ ap,λ |ψ〉 . (5.53)

Physical state space. Let’s find out what this means for a ‘physical’ one-particle
state. We start by writing it as the most general superposition of polarization states
with momentum k:

|ψ〉 =
∑
λ

cλ a
†
k,λ |0〉 . (5.54)

Applying the condition (5.51) to it entails

(ap,0 − ap,3) |ψ〉 =
∑
λ

cλ (ap,0 − ap,3) a†k,λ |0〉︸ ︷︷ ︸
−2Ep δ3(p−k) (gλ0−gλ3) |0〉

!
= 0 , (5.55)

and therefore c0 = −c3, whereas c1 and c2 are unconstrained. This means there are
two types of ‘physical states’ |ψ〉 that satisfy the transversality condition:

|ψT 〉 =
(
c1 a

†
k,1 + c2 a

†
k,2

)
|0〉 , |φ〉 =

(
a†k,0 − a

†
k,3

)
|0〉 , (5.56)

whereas the negative-norm state a†k,0 |0〉 does not satisfy the constraint. On the other
hand, a massless photon has only two physical polarizations, so what is the meaning
of the state |φ〉? Consider the scalar product

〈ψ|φ〉 = 〈ψ|
(
a†k,0 − a

†
k,3

)
|0〉 = 0 , (5.57)

which must be zero because of Eq. (5.51). Since this holds for all states |ψ〉, and |φ〉
is also one of them, it implies in particular 〈φ|φ〉 = 0, i.e., the state |φ〉 has zero norm.
Because |φ〉 is orthogonal to all |ψ〉, all scalar products of a general state |ψT 〉 + c |φ〉
with any other physical state are the same as those with |ψT 〉 alone, and therefore |φ〉
decouples from all physical processes. In particular, it does not contribute to any matrix
elements such as in Eq. (5.53), which are obtained from the transverse states |ψT 〉 only:
〈φ| O |φ〉 = 0. States that decouple from the physics are also called spurious.

The decoupling statement will become nontrivial in the presence of interactions.
As long as the interactions satisfy gauge invariance, the spurious states decouple from
the S−matrix in all external legs where only the two transverse polarizations survive
(this is a consequence of the Ward identities). However, the spurious states still con-
tribute internally in the sense of virtual particles, where they are necessary to preserve
unitarity.


